浏览代码

Check for Inf values in history; roxygen version bump.

bl 8 年之前
父节点
当前提交
1339aada96

+ 1 - 1
R/DESCRIPTION

@@ -31,5 +31,5 @@ Suggests:
     readr
     readr
 License: BSD_3_clause + file LICENSE
 License: BSD_3_clause + file LICENSE
 LazyData: true
 LazyData: true
-RoxygenNote: 5.0.1
+RoxygenNote: 6.0.1
 VignetteBuilder: knitr
 VignetteBuilder: knitr

+ 3 - 0
R/R/prophet.R

@@ -514,6 +514,9 @@ fit.prophet <- function(m, df, ...) {
   }
   }
   history <- df %>%
   history <- df %>%
     dplyr::filter(!is.na(y))
     dplyr::filter(!is.na(y))
+  if (any(is.infinite(history$y))) {
+    stop("Found infinity in column y.")
+  }
   m$history.dates <- sort(zoo::as.Date(df$ds))
   m$history.dates <- sort(zoo::as.Date(df$ds))
 
 
   out <- setup_dataframe(m, history, initialize_scales = TRUE)
   out <- setup_dataframe(m, history, initialize_scales = TRUE)

+ 0 - 1
R/man/compile_stan_model.Rd

@@ -16,4 +16,3 @@ Stan model.
 \description{
 \description{
 Compile Stan model
 Compile Stan model
 }
 }
-

+ 0 - 1
R/man/df_for_plotting.Rd

@@ -14,4 +14,3 @@ df_for_plotting(m, fcst)
 \description{
 \description{
 Merge history and forecast for plotting.
 Merge history and forecast for plotting.
 }
 }
-

+ 0 - 1
R/man/fit.prophet.Rd

@@ -24,4 +24,3 @@ with the following elements:
   sigma_obs (M array): Noise level.
   sigma_obs (M array): Noise level.
 Note that M=1 if MAP estimation.
 Note that M=1 if MAP estimation.
 }
 }
-

+ 0 - 1
R/man/fourier_series.Rd

@@ -19,4 +19,3 @@ Matrix with seasonality features.
 \description{
 \description{
 Provides Fourier series components with the specified frequency and order.
 Provides Fourier series components with the specified frequency and order.
 }
 }
-

+ 0 - 1
R/man/get_changepoint_matrix.Rd

@@ -15,4 +15,3 @@ array of indexes.
 \description{
 \description{
 Gets changepoint matrix for history dataframe.
 Gets changepoint matrix for history dataframe.
 }
 }
-

+ 0 - 1
R/man/get_prophet_stan_model.Rd

@@ -16,4 +16,3 @@ Stan model.
 \description{
 \description{
 Load compiled Stan model
 Load compiled Stan model
 }
 }
-

+ 0 - 1
R/man/linear_growth_init.Rd

@@ -19,4 +19,3 @@ Provides a strong initialization for linear growth by calculating the
 growth and offset parameters that pass the function through the first and
 growth and offset parameters that pass the function through the first and
 last points in the time series.
 last points in the time series.
 }
 }
-

+ 0 - 1
R/man/logistic_growth_init.Rd

@@ -19,4 +19,3 @@ Provides a strong initialization for logistic growth by calculating the
 growth and offset parameters that pass the function through the first and
 growth and offset parameters that pass the function through the first and
 last points in the time series.
 last points in the time series.
 }
 }
-

+ 0 - 1
R/man/make_all_seasonality_features.Rd

@@ -17,4 +17,3 @@ Dataframe with seasonality.
 \description{
 \description{
 Dataframe with seasonality features.
 Dataframe with seasonality features.
 }
 }
-

+ 0 - 1
R/man/make_future_dataframe.Rd

@@ -23,4 +23,3 @@ Dataframe that extends forward from the end of m$history for the
 \description{
 \description{
 Make dataframe with future dates for forecasting.
 Make dataframe with future dates for forecasting.
 }
 }
-

+ 0 - 1
R/man/make_holiday_features.Rd

@@ -17,4 +17,3 @@ A dataframe with a column for each holiday.
 \description{
 \description{
 Construct a matrix of holiday features.
 Construct a matrix of holiday features.
 }
 }
-

+ 0 - 1
R/man/make_seasonality_features.Rd

@@ -21,4 +21,3 @@ Dataframe with seasonality.
 \description{
 \description{
 Data frame with seasonality features.
 Data frame with seasonality features.
 }
 }
-

+ 0 - 1
R/man/piecewise_linear.Rd

@@ -23,4 +23,3 @@ Vector y(t).
 \description{
 \description{
 Evaluate the piecewise linear function.
 Evaluate the piecewise linear function.
 }
 }
-

+ 0 - 1
R/man/piecewise_logistic.Rd

@@ -25,4 +25,3 @@ Vector y(t).
 \description{
 \description{
 Evaluate the piecewise logistic function.
 Evaluate the piecewise logistic function.
 }
 }
-

+ 0 - 1
R/man/plot.prophet.Rd

@@ -41,4 +41,3 @@ plot(m, forecast)
 }
 }
 
 
 }
 }
-

+ 0 - 1
R/man/plot_holidays.Rd

@@ -19,4 +19,3 @@ A ggplot2 plot.
 \description{
 \description{
 Plot the holidays component of the forecast.
 Plot the holidays component of the forecast.
 }
 }
-

+ 0 - 1
R/man/plot_trend.Rd

@@ -20,4 +20,3 @@ A ggplot2 plot.
 \description{
 \description{
 Plot the prophet trend.
 Plot the prophet trend.
 }
 }
-

+ 0 - 1
R/man/plot_weekly.Rd

@@ -21,4 +21,3 @@ A ggplot2 plot.
 \description{
 \description{
 Plot the weekly component of the forecast.
 Plot the weekly component of the forecast.
 }
 }
-

+ 0 - 1
R/man/plot_yearly.Rd

@@ -21,4 +21,3 @@ A ggplot2 plot.
 \description{
 \description{
 Plot the yearly component of the forecast.
 Plot the yearly component of the forecast.
 }
 }
-

+ 0 - 1
R/man/predict.prophet.Rd

@@ -32,4 +32,3 @@ plot(m, forecast)
 }
 }
 
 
 }
 }
-

+ 0 - 1
R/man/predict_seasonal_components.Rd

@@ -17,4 +17,3 @@ Dataframe with seasonal components.
 \description{
 \description{
 Predict seasonality broken down into components.
 Predict seasonality broken down into components.
 }
 }
-

+ 0 - 1
R/man/predict_trend.Rd

@@ -17,4 +17,3 @@ Vector with trend on prediction dates.
 \description{
 \description{
 Predict trend using the prophet model.
 Predict trend using the prophet model.
 }
 }
-

+ 0 - 1
R/man/predict_uncertainty.Rd

@@ -17,4 +17,3 @@ Dataframe with uncertainty intervals.
 \description{
 \description{
 Prophet uncertainty intervals.
 Prophet uncertainty intervals.
 }
 }
-

+ 0 - 1
R/man/prophet.Rd

@@ -79,4 +79,3 @@ m <- prophet(history)
 }
 }
 
 
 }
 }
-

+ 0 - 1
R/man/prophet_plot_components.Rd

@@ -36,4 +36,3 @@ Plot the components of a prophet forecast.
 Prints a ggplot2 with panels for trend, weekly and yearly seasonalities if
 Prints a ggplot2 with panels for trend, weekly and yearly seasonalities if
 present, and holidays if present.
 present, and holidays if present.
 }
 }
-

+ 0 - 1
R/man/sample_model.Rd

@@ -21,4 +21,3 @@ List of trend, seasonality, and yhat, each a vector like df$t.
 \description{
 \description{
 Simulate observations from the extrapolated generative model.
 Simulate observations from the extrapolated generative model.
 }
 }
-

+ 0 - 1
R/man/sample_predictive_trend.Rd

@@ -19,4 +19,3 @@ Vector of simulated trend over df$t.
 \description{
 \description{
 Simulate the trend using the extrapolated generative model.
 Simulate the trend using the extrapolated generative model.
 }
 }
-

+ 0 - 1
R/man/set_auto_seasonalities.Rd

@@ -17,4 +17,3 @@ Turns on yearly seasonality if there is >=2 years of history.
 Turns on weekly seasonality if there is >=2 weeks of history, and the
 Turns on weekly seasonality if there is >=2 weeks of history, and the
 spacing between dates in the history is <7 days.
 spacing between dates in the history is <7 days.
 }
 }
-

+ 0 - 1
R/man/set_changepoints.Rd

@@ -20,4 +20,3 @@ Sets m$changepoints to the dates of changepoints. Either:
 2) We are generating a grid of them.
 2) We are generating a grid of them.
 3) The user prefers no changepoints be used.
 3) The user prefers no changepoints be used.
 }
 }
-

+ 0 - 1
R/man/setup_dataframe.Rd

@@ -21,4 +21,3 @@ Adds a time index and scales y. Creates auxillary columns 't', 't_ix',
 'y_scaled', and 'cap_scaled'. These columns are used during both fitting
 'y_scaled', and 'cap_scaled'. These columns are used during both fitting
 and predicting.
 and predicting.
 }
 }
-

+ 0 - 1
R/man/validate_inputs.Rd

@@ -12,4 +12,3 @@ validate_inputs(m)
 \description{
 \description{
 Validates the inputs to Prophet.
 Validates the inputs to Prophet.
 }
 }
-

+ 2 - 0
python/fbprophet/forecaster.py

@@ -490,6 +490,8 @@ class Prophet(object):
             raise Exception('Prophet object can only be fit once. '
             raise Exception('Prophet object can only be fit once. '
                             'Instantiate a new object.')
                             'Instantiate a new object.')
         history = df[df['y'].notnull()].copy()
         history = df[df['y'].notnull()].copy()
+        if np.isinf(history['y'].values).any():
+            raise ValueError('Found infinity in column y.')
         self.history_dates = pd.to_datetime(df['ds']).sort_values()
         self.history_dates = pd.to_datetime(df['ds']).sort_values()
 
 
         history = self.setup_dataframe(history, initialize_scales=True)
         history = self.setup_dataframe(history, initialize_scales=True)