|
@@ -147,37 +147,37 @@ forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
|
|
<tr>
|
|
<tr>
|
|
<th>3265</th>
|
|
<th>3265</th>
|
|
<td>2017-01-15</td>
|
|
<td>2017-01-15</td>
|
|
- <td>8.205065</td>
|
|
|
|
- <td>7.488507</td>
|
|
|
|
- <td>8.887731</td>
|
|
|
|
|
|
+ <td>8.206753</td>
|
|
|
|
+ <td>7.485107</td>
|
|
|
|
+ <td>8.920149</td>
|
|
</tr>
|
|
</tr>
|
|
<tr>
|
|
<tr>
|
|
<th>3266</th>
|
|
<th>3266</th>
|
|
<td>2017-01-16</td>
|
|
<td>2017-01-16</td>
|
|
- <td>8.530088</td>
|
|
|
|
- <td>7.862778</td>
|
|
|
|
- <td>9.223688</td>
|
|
|
|
|
|
+ <td>8.531766</td>
|
|
|
|
+ <td>7.779331</td>
|
|
|
|
+ <td>9.284859</td>
|
|
</tr>
|
|
</tr>
|
|
<tr>
|
|
<tr>
|
|
<th>3267</th>
|
|
<th>3267</th>
|
|
<td>2017-01-17</td>
|
|
<td>2017-01-17</td>
|
|
- <td>8.317468</td>
|
|
|
|
- <td>7.644606</td>
|
|
|
|
- <td>9.021893</td>
|
|
|
|
|
|
+ <td>8.319156</td>
|
|
|
|
+ <td>7.610545</td>
|
|
|
|
+ <td>8.986889</td>
|
|
</tr>
|
|
</tr>
|
|
<tr>
|
|
<tr>
|
|
<th>3268</th>
|
|
<th>3268</th>
|
|
<td>2017-01-18</td>
|
|
<td>2017-01-18</td>
|
|
- <td>8.150081</td>
|
|
|
|
- <td>7.462394</td>
|
|
|
|
- <td>8.889095</td>
|
|
|
|
|
|
+ <td>8.151772</td>
|
|
|
|
+ <td>7.415802</td>
|
|
|
|
+ <td>8.875191</td>
|
|
</tr>
|
|
</tr>
|
|
<tr>
|
|
<tr>
|
|
<th>3269</th>
|
|
<th>3269</th>
|
|
<td>2017-01-19</td>
|
|
<td>2017-01-19</td>
|
|
- <td>8.162015</td>
|
|
|
|
- <td>7.438503</td>
|
|
|
|
- <td>8.877361</td>
|
|
|
|
|
|
+ <td>8.163690</td>
|
|
|
|
+ <td>7.427153</td>
|
|
|
|
+ <td>8.884826</td>
|
|
</tr>
|
|
</tr>
|
|
</tbody>
|
|
</tbody>
|
|
</table>
|
|
</table>
|
|
@@ -205,6 +205,8 @@ m.plot_components(forecast);
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
+More details about the options available for each method are available in the docstrings, for example, via `help(Prophet)` or `help(Prophet.fit)`.
|
|
|
|
+
|
|
## R API
|
|
## R API
|
|
|
|
|
|
In R, we use the normal model fitting API. We provide a `prophet` function that performs fitting and returns a model object. You can then call `predict` and `plot` on this model object.
|
|
In R, we use the normal model fitting API. We provide a `prophet` function that performs fitting and returns a model object. You can then call `predict` and `plot` on this model object.
|
|
@@ -254,12 +256,12 @@ tail(forecast[c('ds', 'yhat', 'yhat_lower', 'yhat_upper')])
|
|
```
|
|
```
|
|
|
|
|
|
ds yhat yhat_lower yhat_upper
|
|
ds yhat yhat_lower yhat_upper
|
|
- 3265 2017-01-14 7.832396 7.140713 8.533132
|
|
|
|
- 3266 2017-01-15 8.214232 7.460897 8.918678
|
|
|
|
- 3267 2017-01-16 8.539239 7.788240 9.262142
|
|
|
|
- 3268 2017-01-17 8.326654 7.615613 9.003147
|
|
|
|
- 3269 2017-01-18 8.159337 7.382162 8.889958
|
|
|
|
- 3270 2017-01-19 8.171276 7.354854 8.922918
|
|
|
|
|
|
+ 3265 2017-01-14 7.825609 7.183818 8.488012
|
|
|
|
+ 3266 2017-01-15 8.207400 7.478778 8.951113
|
|
|
|
+ 3267 2017-01-16 8.532394 7.826360 9.240482
|
|
|
|
+ 3268 2017-01-17 8.319785 7.596815 9.042505
|
|
|
|
+ 3269 2017-01-18 8.152424 7.440858 8.874581
|
|
|
|
+ 3270 2017-01-19 8.164327 7.419148 8.882906
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -270,7 +272,7 @@ You can use the generic `plot` function to plot the forecast, by passing in the
|
|
plot(m, forecast)
|
|
plot(m, forecast)
|
|
```
|
|
```
|
|
|
|
|
|
-
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
You can use the `prophet_plot_components` function to see the forecast broken down into trend, weekly seasonality, and yearly seasonality.
|
|
You can use the `prophet_plot_components` function to see the forecast broken down into trend, weekly seasonality, and yearly seasonality.
|
|
@@ -280,5 +282,7 @@ You can use the `prophet_plot_components` function to see the forecast broken do
|
|
prophet_plot_components(m, forecast)
|
|
prophet_plot_components(m, forecast)
|
|
```
|
|
```
|
|
|
|
|
|
-
|
|
|
|
|
|
+
|
|
|
|
+
|
|
|
|
|
|
|
|
+More details about the options available for each method are available in the docstrings, for example, via `?prophet` or `?fit.prophet`. This documentation is also available in the [reference manual](https://cran.r-project.org/web/packages/prophet/prophet.pdf) on CRAN.
|