|
@@ -102,21 +102,6 @@ parameters {
|
|
|
vector[K] beta; // Regressor coefficients
|
|
|
}
|
|
|
|
|
|
-transformed parameters {
|
|
|
- vector[T] trend;
|
|
|
- vector[T] Xb_a;
|
|
|
- vector[T] Xb_m;
|
|
|
-
|
|
|
- if (trend_indicator == 0) {
|
|
|
- trend = linear_trend(k, m, delta, t, A, t_change);
|
|
|
- } else if (trend_indicator == 1) {
|
|
|
- trend = logistic_trend(k, m, delta, t, cap, A, t_change, S);
|
|
|
- }
|
|
|
-
|
|
|
- Xb_a = X * (beta .* s_a);
|
|
|
- Xb_m = X * (beta .* s_m);
|
|
|
-}
|
|
|
-
|
|
|
model {
|
|
|
//priors
|
|
|
k ~ normal(0, 5);
|
|
@@ -126,5 +111,19 @@ model {
|
|
|
beta ~ normal(0, sigmas);
|
|
|
|
|
|
// Likelihood
|
|
|
- y ~ normal(trend .* (1 + Xb_m) + Xb_a, sigma_obs);
|
|
|
+ if (trend_indicator == 0) {
|
|
|
+ y ~ normal(
|
|
|
+ linear_trend(k, m, delta, t, A, t_change)
|
|
|
+ .* (1 + X * (beta .* s_m))
|
|
|
+ + X * (beta .* s_a),
|
|
|
+ sigma_obs
|
|
|
+ );
|
|
|
+ } else if (trend_indicator == 1) {
|
|
|
+ y ~ normal(
|
|
|
+ logistic_trend(k, m, delta, t, cap, A, t_change, S)
|
|
|
+ .* (1 + X * (beta .* s_m))
|
|
|
+ + X * (beta .* s_a),
|
|
|
+ sigma_obs
|
|
|
+ );
|
|
|
+ }
|
|
|
}
|