|
@@ -1,13 +1,13 @@
|
|
|
functions {
|
|
|
- matrix get_changepoint_matrix(vector t, vector t_change, int T, int S) {
|
|
|
+ real[ , ] get_changepoint_matrix(real[] t, real[] t_change, int T, int S) {
|
|
|
// Assumes t and t_change are sorted.
|
|
|
- matrix[T, S] A;
|
|
|
- row_vector[S] a_row;
|
|
|
+ real A[T, S];
|
|
|
+ real a_row[S];
|
|
|
int cp_idx;
|
|
|
|
|
|
// Start with an empty matrix.
|
|
|
- A = rep_matrix(0, T, S);
|
|
|
- a_row = rep_row_vector(0, S);
|
|
|
+ A = rep_array(0, T, S);
|
|
|
+ a_row = rep_array(0, S);
|
|
|
cp_idx = 1;
|
|
|
|
|
|
// Fill in each row of A.
|
|
@@ -23,9 +23,9 @@ functions {
|
|
|
|
|
|
// Logistic trend functions
|
|
|
|
|
|
- vector logistic_gamma(real k, real m, vector delta, vector t_change, int S) {
|
|
|
- vector[S] gamma; // adjusted offsets, for piecewise continuity
|
|
|
- vector[S + 1] k_s; // actual rate in each segment
|
|
|
+ real[] logistic_gamma(real k, real m, real[] delta, real[] t_change, int S) {
|
|
|
+ real gamma[S]; // adjusted offsets, for piecewise continuity
|
|
|
+ real k_s[S + 1]; // actual rate in each segment
|
|
|
real m_pr;
|
|
|
|
|
|
// Compute the rate in each segment
|
|
@@ -43,45 +43,49 @@ functions {
|
|
|
return gamma;
|
|
|
}
|
|
|
|
|
|
- vector logistic_trend(
|
|
|
+ real[] logistic_trend(
|
|
|
real k,
|
|
|
real m,
|
|
|
- vector delta,
|
|
|
- vector t,
|
|
|
- vector cap,
|
|
|
- matrix A,
|
|
|
- vector t_change,
|
|
|
+ real[] delta,
|
|
|
+ real[] t,
|
|
|
+ real[] cap,
|
|
|
+ real[ , ] A,
|
|
|
+ real[] t_change,
|
|
|
int S,
|
|
|
int T
|
|
|
) {
|
|
|
- vector[S] gamma;
|
|
|
- vector[T] Y;
|
|
|
+ real gamma[S];
|
|
|
+ real Y[T];
|
|
|
|
|
|
gamma = logistic_gamma(k, m, delta, t_change, S);
|
|
|
for (i in 1:T) {
|
|
|
- Y[i] = cap[i] / (1 + exp(-(k + dot_product(A[i], delta)) * (t[i] - (m + dot_product(A[i], gamma)))));
|
|
|
+ Y[i] = cap[i] / (1 + exp(-(k + dot_product(A[i], delta))
|
|
|
+ * (t[i] - (m + dot_product(A[i], gamma)))));
|
|
|
}
|
|
|
return Y;
|
|
|
}
|
|
|
|
|
|
// Linear trend function
|
|
|
|
|
|
- vector linear_trend(
|
|
|
+ real[] linear_trend(
|
|
|
real k,
|
|
|
real m,
|
|
|
- vector delta,
|
|
|
- vector t,
|
|
|
- matrix A,
|
|
|
- vector t_change,
|
|
|
+ real[] delta,
|
|
|
+ real[] t,
|
|
|
+ real[ , ] A,
|
|
|
+ real[] t_change,
|
|
|
int S,
|
|
|
int T
|
|
|
) {
|
|
|
- vector[S] gamma;
|
|
|
- vector[T] Y;
|
|
|
-
|
|
|
- gamma = (-t_change .* delta);
|
|
|
+ real gamma[S];
|
|
|
+ real Y[T];
|
|
|
+
|
|
|
+ for (i in 1:S) {
|
|
|
+ gamma[i] = -t_change[i] * delta[i];
|
|
|
+ }
|
|
|
for (i in 1:T) {
|
|
|
- Y[i] = (k + dot_product(A[i], delta)) * t[i] + (m + dot_product(A[i], gamma));
|
|
|
+ Y[i] = (k + dot_product(A[i], delta)) * t[i] + (
|
|
|
+ m + dot_product(A[i], gamma));
|
|
|
}
|
|
|
return Y;
|
|
|
}
|
|
@@ -90,37 +94,37 @@ functions {
|
|
|
data {
|
|
|
int T; // Number of time periods
|
|
|
int<lower=1> K; // Number of regressors
|
|
|
- vector[T] t; // Time
|
|
|
- vector[T] cap; // Capacities for logistic trend
|
|
|
- vector[T] y; // Time series
|
|
|
+ real t[T]; // Time
|
|
|
+ real cap[T]; // Capacities for logistic trend
|
|
|
+ real y[T]; // Time series
|
|
|
int S; // Number of changepoints
|
|
|
- vector[S] t_change; // Times of trend changepoints
|
|
|
- matrix[T,K] X; // Regressors
|
|
|
+ real t_change[S]; // Times of trend changepoints
|
|
|
+ real X[T,K]; // Regressors
|
|
|
vector[K] sigmas; // Scale on seasonality prior
|
|
|
real<lower=0> tau; // Scale on changepoints prior
|
|
|
int trend_indicator; // 0 for linear, 1 for logistic
|
|
|
- vector[K] s_a; // Indicator of additive features
|
|
|
- vector[K] s_m; // Indicator of multiplicative features
|
|
|
+ real s_a[K]; // Indicator of additive features
|
|
|
+ real s_m[K]; // Indicator of multiplicative features
|
|
|
}
|
|
|
|
|
|
transformed data {
|
|
|
- matrix[T, S] A;
|
|
|
+ real A[T, S];
|
|
|
A = get_changepoint_matrix(t, t_change, T, S);
|
|
|
}
|
|
|
|
|
|
parameters {
|
|
|
real k; // Base trend growth rate
|
|
|
real m; // Trend offset
|
|
|
- vector[S] delta; // Trend rate adjustments
|
|
|
+ real delta[S]; // Trend rate adjustments
|
|
|
real<lower=0> sigma_obs; // Observation noise
|
|
|
- vector[K] beta; // Regressor coefficients
|
|
|
+ real beta[K]; // Regressor coefficients
|
|
|
}
|
|
|
|
|
|
transformed parameters {
|
|
|
- vector[T] trend;
|
|
|
- vector[T] Y;
|
|
|
- vector[T] Xb_a;
|
|
|
- vector[T] Xb_m;
|
|
|
+ real trend[T];
|
|
|
+ real Y[T];
|
|
|
+ real beta_m[K];
|
|
|
+ real beta_a[K];
|
|
|
|
|
|
if (trend_indicator == 0) {
|
|
|
trend = linear_trend(k, m, delta, t, A, t_change, S, T);
|
|
@@ -128,10 +132,15 @@ transformed parameters {
|
|
|
trend = logistic_trend(k, m, delta, t, cap, A, t_change, S, T);
|
|
|
}
|
|
|
|
|
|
+ for (i in 1:K) {
|
|
|
+ beta_m[i] = beta[i] * s_m[i];
|
|
|
+ beta_a[i] = beta[i] * s_a[i];
|
|
|
+ }
|
|
|
+
|
|
|
for (i in 1:T) {
|
|
|
- Xb_a[i] = dot_product(X[i], beta .* s_a);
|
|
|
- Xb_m[i] = dot_product(X[i], beta .* s_m);
|
|
|
- Y[i] = trend[i] * (1 + Xb_m[i]) + Xb_a[i];
|
|
|
+ Y[i] = (
|
|
|
+ trend[i] * (1 + dot_product(X[i], beta_m)) + dot_product(X[i], beta_a)
|
|
|
+ );
|
|
|
}
|
|
|
}
|
|
|
|