Pārlūkot izejas kodu

Add docstring to Python methods, and minor fixes to R documentation.

Ben Letham 8 gadi atpakaļ
vecāks
revīzija
b999dd4aa4

+ 44 - 30
R/R/prophet.R

@@ -15,14 +15,14 @@ globalVariables(c(
 
 
 #' Prophet forecaster.
 #' Prophet forecaster.
 #'
 #'
-#' @param df Data frame with columns ds (date type) and y, the time series.
-#'  If growth is logistic, then df must also have a column cap that specifies
-#'  the capacity at each ds.
+#' @param df Dataframe containing the history. Must have columns ds (date type)
+#'  and y, the time series. If growth is logistic, then df must also have a
+#'  column cap that specifies the capacity at each ds.
 #' @param growth String 'linear' or 'logistic' to specify a linear or logistic
 #' @param growth String 'linear' or 'logistic' to specify a linear or logistic
 #'  trend.
 #'  trend.
 #' @param changepoints Vector of dates at which to include potential
 #' @param changepoints Vector of dates at which to include potential
-#'  changepoints. Each date must be present in df$ds. If not specified,
-#'  potential changepoints are selected automatically.
+#'  changepoints. If not specified, potential changepoints are selected
+#'  automatically.
 #' @param n.changepoints Number of potential changepoints to include. Not used
 #' @param n.changepoints Number of potential changepoints to include. Not used
 #'  if input `changepoints` is supplied. If `changepoints` is not supplied,
 #'  if input `changepoints` is supplied. If `changepoints` is not supplied,
 #'  then n.changepoints potential changepoints are selected uniformly from the
 #'  then n.changepoints potential changepoints are selected uniformly from the
@@ -36,11 +36,11 @@ globalVariables(c(
 #' @param seasonality.prior.scale Parameter modulating the strength of the
 #' @param seasonality.prior.scale Parameter modulating the strength of the
 #'  seasonality model. Larger values allow the model to fit larger seasonal
 #'  seasonality model. Larger values allow the model to fit larger seasonal
 #'  fluctuations, smaller values dampen the seasonality.
 #'  fluctuations, smaller values dampen the seasonality.
+#' @param holidays.prior.scale Parameter modulating the strength of the holiday
+#'  components model.
 #' @param changepoint.prior.scale Parameter modulating the flexibility of the
 #' @param changepoint.prior.scale Parameter modulating the flexibility of the
 #'  automatic changepoint selection. Large values will allow many changepoints,
 #'  automatic changepoint selection. Large values will allow many changepoints,
 #'  small values will allow few changepoints.
 #'  small values will allow few changepoints.
-#' @param holidays.prior.scale Parameter modulating the strength of the holiday
-#'  components model.
 #' @param mcmc.samples Integer, if great than 0, will do full Bayesian
 #' @param mcmc.samples Integer, if great than 0, will do full Bayesian
 #'  inference with the specified number of MCMC samples. If 0, will do MAP
 #'  inference with the specified number of MCMC samples. If 0, will do MAP
 #'  estimation.
 #'  estimation.
@@ -74,8 +74,8 @@ prophet <- function(df = df,
                     weekly.seasonality = TRUE,
                     weekly.seasonality = TRUE,
                     holidays = NULL,
                     holidays = NULL,
                     seasonality.prior.scale = 10,
                     seasonality.prior.scale = 10,
-                    changepoint.prior.scale = 0.05,
                     holidays.prior.scale = 10,
                     holidays.prior.scale = 10,
+                    changepoint.prior.scale = 0.05,
                     mcmc.samples = 0,
                     mcmc.samples = 0,
                     interval.width = 0.80,
                     interval.width = 0.80,
                     uncertainty.samples = 1000,
                     uncertainty.samples = 1000,
@@ -203,7 +203,9 @@ compile_stan_model <- function(model) {
 
 
 #' Prepare dataframe for fitting or predicting.
 #' Prepare dataframe for fitting or predicting.
 #'
 #'
-#' Adds a time index and scales y.
+#' Adds a time index and scales y. Creates auxillary columns 't', 't_ix',
+#' 'y_scaled', and 'cap_scaled'. These columns are used during both fitting
+#' and predicting.
 #'
 #'
 #' @param m Prophet object.
 #' @param m Prophet object.
 #' @param df Data frame with columns ds, y, and cap if logistic growth.
 #' @param df Data frame with columns ds, y, and cap if logistic growth.
@@ -243,7 +245,12 @@ setup_dataframe <- function(m, df, initialize_scales = FALSE) {
 
 
 #' Set changepoints
 #' Set changepoints
 #'
 #'
-#' Sets m$changepoints to the dates of changepoints.
+#' Sets m$changepoints to the dates of changepoints. Either:
+#' 1) The changepoints were passed in explicitly.
+#'   A) They are empty.
+#'   B) They are not empty, and need validation.
+#' 2) We are generating a grid of them.
+#' 3) The user prefers no changepoints be used.
 #'
 #'
 #' @param m Prophet object.
 #' @param m Prophet object.
 #'
 #'
@@ -292,7 +299,7 @@ get_changepoint_matrix <- function(m) {
   return(A)
   return(A)
 }
 }
 
 
-#' Provides fourier series components with the specified frequency.
+#' Provides Fourier series components with the specified frequency and order.
 #'
 #'
 #' @param dates Vector of dates.
 #' @param dates Vector of dates.
 #' @param period Number of days of the period.
 #' @param period Number of days of the period.
@@ -316,7 +323,7 @@ fourier_series <- function(dates, period, series.order) {
 #' @param dates Vector of dates.
 #' @param dates Vector of dates.
 #' @param period Number of days of the period.
 #' @param period Number of days of the period.
 #' @param series.order Number of components.
 #' @param series.order Number of components.
-#' @param prefix Column name prefix
+#' @param prefix Column name prefix.
 #'
 #'
 #' @return Dataframe with seasonality.
 #' @return Dataframe with seasonality.
 #'
 #'
@@ -331,7 +338,7 @@ make_seasonality_features <- function(dates, period, series.order, prefix) {
 #' @param m Prophet object.
 #' @param m Prophet object.
 #' @param dates Vector with dates used for computing seasonality.
 #' @param dates Vector with dates used for computing seasonality.
 #'
 #'
-#' @return A dataframe with a column for each holiday
+#' @return A dataframe with a column for each holiday.
 #'
 #'
 #' @importFrom dplyr "%>%"
 #' @importFrom dplyr "%>%"
 make_holiday_features <- function(m, dates) {
 make_holiday_features <- function(m, dates) {
@@ -362,7 +369,7 @@ make_holiday_features <- function(m, dates) {
   return(holiday.mat)
   return(holiday.mat)
 }
 }
 
 
-#' Data frame seasonality features.
+#' Dataframe with seasonality features.
 #'
 #'
 #' @param m Prophet object.
 #' @param m Prophet object.
 #' @param df Dataframe with dates for computing seasonality features.
 #' @param df Dataframe with dates for computing seasonality features.
@@ -391,14 +398,14 @@ make_all_seasonality_features <- function(m, df) {
   return(seasonal.features)
   return(seasonal.features)
 }
 }
 
 
-#' Initialize linear growth
+#' Initialize linear growth.
 #'
 #'
 #' Provides a strong initialization for linear growth by calculating the
 #' Provides a strong initialization for linear growth by calculating the
 #' growth and offset parameters that pass the function through the first and
 #' growth and offset parameters that pass the function through the first and
 #' last points in the time series.
 #' last points in the time series.
 #'
 #'
-#' @param df Data frame with columns ds (date), cap_scaled (scaled capacity),
-#'  y_scaled (scaled time series), and t (scaled time).
+#' @param df Data frame with columns ds (date), y_scaled (scaled time series),
+#'  and t (scaled time).
 #'
 #'
 #' @return A vector (k, m) with the rate (k) and offset (m) of the linear
 #' @return A vector (k, m) with the rate (k) and offset (m) of the linear
 #'  growth function.
 #'  growth function.
@@ -414,7 +421,7 @@ linear_growth_init <- function(df) {
   return(c(k, m))
   return(c(k, m))
 }
 }
 
 
-#' Initialize logistic growth
+#' Initialize logistic growth.
 #'
 #'
 #' Provides a strong initialization for logistic growth by calculating the
 #' Provides a strong initialization for logistic growth by calculating the
 #' growth and offset parameters that pass the function through the first and
 #' growth and offset parameters that pass the function through the first and
@@ -543,11 +550,12 @@ fit.prophet <- function(m, df, ...) {
 #' Predict using the prophet model.
 #' Predict using the prophet model.
 #'
 #'
 #' @param object Prophet object.
 #' @param object Prophet object.
-#' @param df Dataframe with dates for predictions, and capacity if logistic
-#'  growth. If not provided, predictions are made on the history.
-#' @param ... additional arguments
+#' @param df Dataframe with dates for predictions (column ds), and capacity
+#'  (column cap) if logistic growth. If not provided, predictions are made on
+#'  the history.
+#' @param ... additional arguments.
 #'
 #'
-#' @return A data_frame with a forecast
+#' @return A dataframe with the forecast components.
 #'
 #'
 #' @examples
 #' @examples
 #' \dontrun{
 #' \dontrun{
@@ -636,7 +644,9 @@ piecewise_logistic <- function(t, cap, deltas, k, m, changepoint.ts) {
 #' Predict trend using the prophet model.
 #' Predict trend using the prophet model.
 #'
 #'
 #' @param model Prophet object.
 #' @param model Prophet object.
-#' @param df Data frame.
+#' @param df Prediction dataframe.
+#'
+#' @return Vector with trend on prediction dates.
 #'
 #'
 predict_trend <- function(model, df) {
 predict_trend <- function(model, df) {
   k <- mean(model$params$k, na.rm = TRUE)
   k <- mean(model$params$k, na.rm = TRUE)
@@ -654,10 +664,12 @@ predict_trend <- function(model, df) {
   return(trend * model$y.scale)
   return(trend * model$y.scale)
 }
 }
 
 
-#' Seasonality broken down into components
+#' Predict seasonality broken down into components.
 #'
 #'
 #' @param m Prophet object.
 #' @param m Prophet object.
-#' @param df Data frame.
+#' @param df Prediction dataframe.
+#'
+#' @return Dataframe with seasonal components.
 #'
 #'
 predict_seasonal_components <- function(m, df) {
 predict_seasonal_components <- function(m, df) {
   seasonal.features <- make_all_seasonality_features(m, df)
   seasonal.features <- make_all_seasonality_features(m, df)
@@ -700,7 +712,9 @@ predict_seasonal_components <- function(m, df) {
 #' Prophet uncertainty intervals.
 #' Prophet uncertainty intervals.
 #'
 #'
 #' @param m Prophet object.
 #' @param m Prophet object.
-#' @param df Data frame.
+#' @param df Prediction dataframe.
+#'
+#' @return Dataframe with uncertainty intervals.
 #'
 #'
 predict_uncertainty <- function(m, df) {
 predict_uncertainty <- function(m, df) {
   # Sample trend, seasonality, and yhat from the extrapolation model.
   # Sample trend, seasonality, and yhat from the extrapolation model.
@@ -746,9 +760,9 @@ predict_uncertainty <- function(m, df) {
 #' Simulate observations from the extrapolated generative model.
 #' Simulate observations from the extrapolated generative model.
 #'
 #'
 #' @param m Prophet object.
 #' @param m Prophet object.
-#' @param df Dataframe that was fit by Prophet.
+#' @param df Prediction dataframe.
 #' @param seasonal.features Data frame of seasonal features
 #' @param seasonal.features Data frame of seasonal features
-#' @param iteration Int sampling iteration ot use parameters from.
+#' @param iteration Int sampling iteration to use parameters from.
 #'
 #'
 #' @return List of trend, seasonality, and yhat, each a vector like df$t.
 #' @return List of trend, seasonality, and yhat, each a vector like df$t.
 #'
 #'
@@ -769,8 +783,8 @@ sample_model <- function(m, df, seasonal.features, iteration) {
 #' Simulate the trend using the extrapolated generative model.
 #' Simulate the trend using the extrapolated generative model.
 #'
 #'
 #' @param model Prophet object.
 #' @param model Prophet object.
-#' @param df Dataframe that was fit by Prophet.
-#' @param iteration Int sampling iteration ot use parameters from.
+#' @param df Prediction dataframe.
+#' @param iteration Int sampling iteration to use parameters from.
 #'
 #'
 #' @return Vector of simulated trend over df$t.
 #' @return Vector of simulated trend over df$t.
 #'
 #'

+ 2 - 2
R/man/fourier_series.Rd

@@ -2,7 +2,7 @@
 % Please edit documentation in R/prophet.R
 % Please edit documentation in R/prophet.R
 \name{fourier_series}
 \name{fourier_series}
 \alias{fourier_series}
 \alias{fourier_series}
-\title{Provides fourier series components with the specified frequency.}
+\title{Provides Fourier series components with the specified frequency and order.}
 \usage{
 \usage{
 fourier_series(dates, period, series.order)
 fourier_series(dates, period, series.order)
 }
 }
@@ -17,6 +17,6 @@ fourier_series(dates, period, series.order)
 Matrix with seasonality features.
 Matrix with seasonality features.
 }
 }
 \description{
 \description{
-Provides fourier series components with the specified frequency.
+Provides Fourier series components with the specified frequency and order.
 }
 }
 
 

+ 3 - 3
R/man/linear_growth_init.Rd

@@ -2,13 +2,13 @@
 % Please edit documentation in R/prophet.R
 % Please edit documentation in R/prophet.R
 \name{linear_growth_init}
 \name{linear_growth_init}
 \alias{linear_growth_init}
 \alias{linear_growth_init}
-\title{Initialize linear growth}
+\title{Initialize linear growth.}
 \usage{
 \usage{
 linear_growth_init(df)
 linear_growth_init(df)
 }
 }
 \arguments{
 \arguments{
-\item{df}{Data frame with columns ds (date), cap_scaled (scaled capacity),
-y_scaled (scaled time series), and t (scaled time).}
+\item{df}{Data frame with columns ds (date), y_scaled (scaled time series),
+and t (scaled time).}
 }
 }
 \value{
 \value{
 A vector (k, m) with the rate (k) and offset (m) of the linear
 A vector (k, m) with the rate (k) and offset (m) of the linear

+ 1 - 1
R/man/logistic_growth_init.Rd

@@ -2,7 +2,7 @@
 % Please edit documentation in R/prophet.R
 % Please edit documentation in R/prophet.R
 \name{logistic_growth_init}
 \name{logistic_growth_init}
 \alias{logistic_growth_init}
 \alias{logistic_growth_init}
-\title{Initialize logistic growth}
+\title{Initialize logistic growth.}
 \usage{
 \usage{
 logistic_growth_init(df)
 logistic_growth_init(df)
 }
 }

+ 2 - 2
R/man/make_all_seasonality_features.Rd

@@ -2,7 +2,7 @@
 % Please edit documentation in R/prophet.R
 % Please edit documentation in R/prophet.R
 \name{make_all_seasonality_features}
 \name{make_all_seasonality_features}
 \alias{make_all_seasonality_features}
 \alias{make_all_seasonality_features}
-\title{Data frame seasonality features.}
+\title{Dataframe with seasonality features.}
 \usage{
 \usage{
 make_all_seasonality_features(m, df)
 make_all_seasonality_features(m, df)
 }
 }
@@ -15,6 +15,6 @@ make_all_seasonality_features(m, df)
 Dataframe with seasonality.
 Dataframe with seasonality.
 }
 }
 \description{
 \description{
-Data frame seasonality features.
+Dataframe with seasonality features.
 }
 }
 
 

+ 1 - 1
R/man/make_holiday_features.Rd

@@ -12,7 +12,7 @@ make_holiday_features(m, dates)
 \item{dates}{Vector with dates used for computing seasonality.}
 \item{dates}{Vector with dates used for computing seasonality.}
 }
 }
 \value{
 \value{
-A dataframe with a column for each holiday
+A dataframe with a column for each holiday.
 }
 }
 \description{
 \description{
 Construct a matrix of holiday features.
 Construct a matrix of holiday features.

+ 1 - 1
R/man/make_seasonality_features.Rd

@@ -13,7 +13,7 @@ make_seasonality_features(dates, period, series.order, prefix)
 
 
 \item{series.order}{Number of components.}
 \item{series.order}{Number of components.}
 
 
-\item{prefix}{Column name prefix}
+\item{prefix}{Column name prefix.}
 }
 }
 \value{
 \value{
 Dataframe with seasonality.
 Dataframe with seasonality.

+ 5 - 4
R/man/predict.prophet.Rd

@@ -9,13 +9,14 @@
 \arguments{
 \arguments{
 \item{object}{Prophet object.}
 \item{object}{Prophet object.}
 
 
-\item{df}{Dataframe with dates for predictions, and capacity if logistic
-growth. If not provided, predictions are made on the history.}
+\item{df}{Dataframe with dates for predictions (column ds), and capacity
+(column cap) if logistic growth. If not provided, predictions are made on
+the history.}
 
 
-\item{...}{additional arguments}
+\item{...}{additional arguments.}
 }
 }
 \value{
 \value{
-A data_frame with a forecast
+A dataframe with the forecast components.
 }
 }
 \description{
 \description{
 Predict using the prophet model.
 Predict using the prophet model.

+ 6 - 3
R/man/predict_seasonal_components.Rd

@@ -2,16 +2,19 @@
 % Please edit documentation in R/prophet.R
 % Please edit documentation in R/prophet.R
 \name{predict_seasonal_components}
 \name{predict_seasonal_components}
 \alias{predict_seasonal_components}
 \alias{predict_seasonal_components}
-\title{Seasonality broken down into components}
+\title{Predict seasonality broken down into components.}
 \usage{
 \usage{
 predict_seasonal_components(m, df)
 predict_seasonal_components(m, df)
 }
 }
 \arguments{
 \arguments{
 \item{m}{Prophet object.}
 \item{m}{Prophet object.}
 
 
-\item{df}{Data frame.}
+\item{df}{Prediction dataframe.}
+}
+\value{
+Dataframe with seasonal components.
 }
 }
 \description{
 \description{
-Seasonality broken down into components
+Predict seasonality broken down into components.
 }
 }
 
 

+ 4 - 1
R/man/predict_trend.Rd

@@ -9,7 +9,10 @@ predict_trend(model, df)
 \arguments{
 \arguments{
 \item{model}{Prophet object.}
 \item{model}{Prophet object.}
 
 
-\item{df}{Data frame.}
+\item{df}{Prediction dataframe.}
+}
+\value{
+Vector with trend on prediction dates.
 }
 }
 \description{
 \description{
 Predict trend using the prophet model.
 Predict trend using the prophet model.

+ 4 - 1
R/man/predict_uncertainty.Rd

@@ -9,7 +9,10 @@ predict_uncertainty(m, df)
 \arguments{
 \arguments{
 \item{m}{Prophet object.}
 \item{m}{Prophet object.}
 
 
-\item{df}{Data frame.}
+\item{df}{Prediction dataframe.}
+}
+\value{
+Dataframe with uncertainty intervals.
 }
 }
 \description{
 \description{
 Prophet uncertainty intervals.
 Prophet uncertainty intervals.

+ 10 - 10
R/man/prophet.Rd

@@ -7,21 +7,21 @@
 prophet(df = df, growth = "linear", changepoints = NULL,
 prophet(df = df, growth = "linear", changepoints = NULL,
   n.changepoints = 25, yearly.seasonality = TRUE,
   n.changepoints = 25, yearly.seasonality = TRUE,
   weekly.seasonality = TRUE, holidays = NULL,
   weekly.seasonality = TRUE, holidays = NULL,
-  seasonality.prior.scale = 10, changepoint.prior.scale = 0.05,
-  holidays.prior.scale = 10, mcmc.samples = 0, interval.width = 0.8,
+  seasonality.prior.scale = 10, holidays.prior.scale = 10,
+  changepoint.prior.scale = 0.05, mcmc.samples = 0, interval.width = 0.8,
   uncertainty.samples = 1000, fit = TRUE, ...)
   uncertainty.samples = 1000, fit = TRUE, ...)
 }
 }
 \arguments{
 \arguments{
-\item{df}{Data frame with columns ds (date type) and y, the time series.
-If growth is logistic, then df must also have a column cap that specifies
-the capacity at each ds.}
+\item{df}{Dataframe containing the history. Must have columns ds (date type)
+and y, the time series. If growth is logistic, then df must also have a
+column cap that specifies the capacity at each ds.}
 
 
 \item{growth}{String 'linear' or 'logistic' to specify a linear or logistic
 \item{growth}{String 'linear' or 'logistic' to specify a linear or logistic
 trend.}
 trend.}
 
 
 \item{changepoints}{Vector of dates at which to include potential
 \item{changepoints}{Vector of dates at which to include potential
-changepoints. Each date must be present in df$ds. If not specified,
-potential changepoints are selected automatically.}
+changepoints. If not specified, potential changepoints are selected
+automatically.}
 
 
 \item{n.changepoints}{Number of potential changepoints to include. Not used
 \item{n.changepoints}{Number of potential changepoints to include. Not used
 if input `changepoints` is supplied. If `changepoints` is not supplied,
 if input `changepoints` is supplied. If `changepoints` is not supplied,
@@ -41,13 +41,13 @@ will include 2 days prior to the date as holidays.}
 seasonality model. Larger values allow the model to fit larger seasonal
 seasonality model. Larger values allow the model to fit larger seasonal
 fluctuations, smaller values dampen the seasonality.}
 fluctuations, smaller values dampen the seasonality.}
 
 
+\item{holidays.prior.scale}{Parameter modulating the strength of the holiday
+components model.}
+
 \item{changepoint.prior.scale}{Parameter modulating the flexibility of the
 \item{changepoint.prior.scale}{Parameter modulating the flexibility of the
 automatic changepoint selection. Large values will allow many changepoints,
 automatic changepoint selection. Large values will allow many changepoints,
 small values will allow few changepoints.}
 small values will allow few changepoints.}
 
 
-\item{holidays.prior.scale}{Parameter modulating the strength of the holiday
-components model.}
-
 \item{mcmc.samples}{Integer, if great than 0, will do full Bayesian
 \item{mcmc.samples}{Integer, if great than 0, will do full Bayesian
 inference with the specified number of MCMC samples. If 0, will do MAP
 inference with the specified number of MCMC samples. If 0, will do MAP
 estimation.}
 estimation.}

+ 2 - 2
R/man/sample_model.Rd

@@ -9,11 +9,11 @@ sample_model(m, df, seasonal.features, iteration)
 \arguments{
 \arguments{
 \item{m}{Prophet object.}
 \item{m}{Prophet object.}
 
 
-\item{df}{Dataframe that was fit by Prophet.}
+\item{df}{Prediction dataframe.}
 
 
 \item{seasonal.features}{Data frame of seasonal features}
 \item{seasonal.features}{Data frame of seasonal features}
 
 
-\item{iteration}{Int sampling iteration ot use parameters from.}
+\item{iteration}{Int sampling iteration to use parameters from.}
 }
 }
 \value{
 \value{
 List of trend, seasonality, and yhat, each a vector like df$t.
 List of trend, seasonality, and yhat, each a vector like df$t.

+ 2 - 2
R/man/sample_predictive_trend.Rd

@@ -9,9 +9,9 @@ sample_predictive_trend(model, df, iteration)
 \arguments{
 \arguments{
 \item{model}{Prophet object.}
 \item{model}{Prophet object.}
 
 
-\item{df}{Dataframe that was fit by Prophet.}
+\item{df}{Prediction dataframe.}
 
 
-\item{iteration}{Int sampling iteration ot use parameters from.}
+\item{iteration}{Int sampling iteration to use parameters from.}
 }
 }
 \value{
 \value{
 Vector of simulated trend over df$t.
 Vector of simulated trend over df$t.

+ 6 - 1
R/man/set_changepoints.Rd

@@ -13,6 +13,11 @@ set_changepoints(m)
 m with changepoints set.
 m with changepoints set.
 }
 }
 \description{
 \description{
-Sets m$changepoints to the dates of changepoints.
+Sets m$changepoints to the dates of changepoints. Either:
+1) The changepoints were passed in explicitly.
+  A) They are empty.
+  B) They are not empty, and need validation.
+2) We are generating a grid of them.
+3) The user prefers no changepoints be used.
 }
 }
 
 

+ 3 - 1
R/man/setup_dataframe.Rd

@@ -17,6 +17,8 @@ setup_dataframe(m, df, initialize_scales = FALSE)
 list with items 'df' and 'm'.
 list with items 'df' and 'm'.
 }
 }
 \description{
 \description{
-Adds a time index and scales y.
+Adds a time index and scales y. Creates auxillary columns 't', 't_ix',
+'y_scaled', and 'cap_scaled'. These columns are used during both fitting
+and predicting.
 }
 }
 
 

+ 247 - 25
python/fbprophet/forecaster.py

@@ -34,6 +34,44 @@ except ImportError:
 # fb-block 2
 # fb-block 2
 
 
 class Prophet(object):
 class Prophet(object):
+    """Prophet forecaster.
+
+    Parameters
+    ----------
+    growth: String 'linear' or 'logistic' to specify a linear or logistic
+        trend.
+    changepoints: List of dates at which to include potential changepoints. If
+        not specified, potential changepoints are selected automatically.
+    n_changepoints: Number of potential changepoints to include. Not used
+        if input `changepoints` is supplied. If `changepoints` is not supplied,
+        then n.changepoints potential changepoints are selected uniformly from
+        the first 80 percent of the history.
+    yearly_seasonality: Boolean, fit yearly seasonality.
+    weekly_seasonality: Boolean, fit weekly seasonality.
+    holidays: pd.DataFrame with columns holiday (string) and ds (date type)
+        and optionally columns lower_window and upper_window which specify a
+        range of days around the date to be included as holidays.
+        lower_window=-2 will include 2 days prior to the date as holidays.
+    seasonality_prior_scale: Parameter modulating the strength of the
+        seasonality model. Larger values allow the model to fit larger seasonal
+        fluctuations, smaller values dampen the seasonality.
+    holidays_prior_scale: Parameter modulating the strength of the holiday
+        components model.
+    changepoint_prior_scale: Parameter modulating the flexibility of the
+        automatic changepoint selection. Large values will allow many
+        changepoints, small values will allow few changepoints.
+    mcmc_samples: Integer, if great than 0, will do full Bayesian inference
+        with the specified number of MCMC samples. If 0, will do MAP
+        estimation.
+    interval_width: Float, width of the uncertainty intervals provided
+        for the forecast. If mcmc_samples=0, this will be only the uncertainty
+        in the trend using the MAP estimate of the extrapolated generative
+        model. If mcmc.samples>0, this will be integrated over all model
+        parameters, which will include uncertainty in seasonality.
+    uncertainty_samples: Number of simulated draws used to estimate
+        uncertainty intervals.
+    """
+
     def __init__(
     def __init__(
             self,
             self,
             growth='linear',
             growth='linear',
@@ -91,6 +129,7 @@ class Prophet(object):
         self.validate_inputs()
         self.validate_inputs()
 
 
     def validate_inputs(self):
     def validate_inputs(self):
+        """Validates the inputs to Prophet."""
         if self.growth not in ('linear', 'logistic'):
         if self.growth not in ('linear', 'logistic'):
             raise ValueError(
             raise ValueError(
                 "Parameter 'growth' should be 'linear' or 'logistic'.")
                 "Parameter 'growth' should be 'linear' or 'logistic'.")
@@ -114,6 +153,7 @@ class Prophet(object):
 
 
     @classmethod
     @classmethod
     def get_linear_model(cls):
     def get_linear_model(cls):
+        """Load compiled linear trend Stan model"""
         # fb-block 3
         # fb-block 3
         # fb-block 4 start
         # fb-block 4 start
         model_file = pkg_resources.resource_filename(
         model_file = pkg_resources.resource_filename(
@@ -126,6 +166,7 @@ class Prophet(object):
 
 
     @classmethod
     @classmethod
     def get_logistic_model(cls):
     def get_logistic_model(cls):
+        """Load compiled logistic trend Stan model"""
         # fb-block 5
         # fb-block 5
         # fb-block 6 start
         # fb-block 6 start
         model_file = pkg_resources.resource_filename(
         model_file = pkg_resources.resource_filename(
@@ -137,9 +178,20 @@ class Prophet(object):
             return pickle.load(f)
             return pickle.load(f)
 
 
     def setup_dataframe(self, df, initialize_scales=False):
     def setup_dataframe(self, df, initialize_scales=False):
-        """Create auxillary columns 't', 't_ix', 'y_scaled', and 'cap_scaled'.
+        """Prepare dataframe for fitting or predicting.
+
+        Adds a time index and scales y. Creates auxillary columns 't', 't_ix',
+        'y_scaled', and 'cap_scaled'. These columns are used during both
+        fitting and predicting.
 
 
-        These columns are used during both fitting and prediction.
+        Parameters
+        ----------
+        df: pd.DataFrame with columns ds, y, and cap if logistic growth.
+        initialize_scales: Boolean set scaling factors in self from df.
+
+        Returns
+        -------
+        pd.DataFrame prepared for fitting or predicting.
         """
         """
         if 'y' in df:
         if 'y' in df:
             df['y'] = pd.to_numeric(df['y'])
             df['y'] = pd.to_numeric(df['y'])
@@ -164,14 +216,14 @@ class Prophet(object):
         return df
         return df
 
 
     def set_changepoints(self):
     def set_changepoints(self):
-        """Generate a list of changepoints.
-
-        Either:
-        1) the changepoints were passed in explicitly
-           A) they are empty
-           B) not empty, needs validation
-        2) we are generating a grid of them
-        3) the user prefers no changepoints to be used
+        """Set changepoints
+
+        Sets m$changepoints to the dates of changepoints. Either:
+        1) The changepoints were passed in explicitly.
+            A) They are empty.
+            B) They are not empty, and need validation.
+        2) We are generating a grid of them.
+        3) The user prefers no changepoints be used.
         """
         """
         if self.changepoints is not None:
         if self.changepoints is not None:
             if len(self.changepoints) == 0:
             if len(self.changepoints) == 0:
@@ -200,6 +252,7 @@ class Prophet(object):
             self.changepoints_t = np.array([0])  # dummy changepoint
             self.changepoints_t = np.array([0])  # dummy changepoint
 
 
     def get_changepoint_matrix(self):
     def get_changepoint_matrix(self):
+        """Gets changepoint matrix for history dataframe."""
         A = np.zeros((self.history.shape[0], len(self.changepoints_t)))
         A = np.zeros((self.history.shape[0], len(self.changepoints_t)))
         for i, t_i in enumerate(self.changepoints_t):
         for i, t_i in enumerate(self.changepoints_t):
             A[self.history['t'].values >= t_i, i] = 1
             A[self.history['t'].values >= t_i, i] = 1
@@ -207,17 +260,18 @@ class Prophet(object):
 
 
     @staticmethod
     @staticmethod
     def fourier_series(dates, period, series_order):
     def fourier_series(dates, period, series_order):
-        """Generate a Fourier expansion for a fixed frequency and order.
+        """Provides Fourier series components with the specified frequency
+        and order.
 
 
         Parameters
         Parameters
         ----------
         ----------
-        dates: a pd.Series containing timestamps
-        period: an integer frequency (number of days)
-        series_order: number of components to generate
+        dates: pd.Series containing timestamps.
+        period: Number of days of the period.
+        series_order: Number of components.
 
 
         Returns
         Returns
         -------
         -------
-        a 2-dimensional np.array with one row per row in `dt`
+        Matrix with seasonality features.
         """
         """
         # convert to days since epoch
         # convert to days since epoch
         t = np.array(
         t = np.array(
@@ -233,6 +287,20 @@ class Prophet(object):
 
 
     @classmethod
     @classmethod
     def make_seasonality_features(cls, dates, period, series_order, prefix):
     def make_seasonality_features(cls, dates, period, series_order, prefix):
+        """Data frame with seasonality features.
+
+        Parameters
+        ----------
+        cls: Prophet class.
+        dates: pd.Series containing timestamps.
+        period: Number of days of the period.
+        series_order: Number of components.
+        prefix: Column name prefix.
+
+        Returns
+        -------
+        pd.DataFrame with seasonality features.
+        """
         features = cls.fourier_series(dates, period, series_order)
         features = cls.fourier_series(dates, period, series_order)
         columns = [
         columns = [
             '{}_delim_{}'.format(prefix, i + 1)
             '{}_delim_{}'.format(prefix, i + 1)
@@ -241,7 +309,15 @@ class Prophet(object):
         return pd.DataFrame(features, columns=columns)
         return pd.DataFrame(features, columns=columns)
 
 
     def make_holiday_features(self, dates):
     def make_holiday_features(self, dates):
-        """Generate a DataFrame with each column corresponding to a holiday.
+        """Construct a dataframe of holiday features.
+
+        Parameters
+        ----------
+        dates: pd.Series containing timestamps used for computing seasonality.
+
+        Returns
+        -------
+        pd.DataFrame with a column for each holiday.
         """
         """
         # A smaller prior scale will shrink holiday estimates more
         # A smaller prior scale will shrink holiday estimates more
         scale_ratio = self.holidays_prior_scale / self.seasonality_prior_scale
         scale_ratio = self.holidays_prior_scale / self.seasonality_prior_scale
@@ -280,6 +356,16 @@ class Prophet(object):
         return pd.DataFrame(expanded_holidays)
         return pd.DataFrame(expanded_holidays)
 
 
     def make_all_seasonality_features(self, df):
     def make_all_seasonality_features(self, df):
+        """Dataframe with seasonality features.
+
+        Parameters
+        ----------
+        df: pd.DataFrame with dates for computing seasonality features.
+
+        Returns
+        -------
+        pd.DataFrame with seasonality.
+        """
         seasonal_features = [
         seasonal_features = [
             # Add a column of zeros in case no seasonality is used.
             # Add a column of zeros in case no seasonality is used.
             pd.DataFrame({'zeros': np.zeros(df.shape[0])})
             pd.DataFrame({'zeros': np.zeros(df.shape[0])})
@@ -308,6 +394,22 @@ class Prophet(object):
 
 
     @staticmethod
     @staticmethod
     def linear_growth_init(df):
     def linear_growth_init(df):
+        """Initialize linear growth.
+
+        Provides a strong initialization for linear growth by calculating the
+        growth and offset parameters that pass the function through the first
+        and last points in the time series.
+
+        Parameters
+        ----------
+        df: pd.DataFrame with columns ds (date), y_scaled (scaled time series),
+            and t (scaled time).
+
+        Returns
+        -------
+        A tuple (k, m) with the rate (k) and offset (m) of the linear growth
+        function.
+        """
         i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
         i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
         T = df['t'].ix[i1] - df['t'].ix[i0]
         T = df['t'].ix[i1] - df['t'].ix[i0]
         k = (df['y_scaled'].ix[i1] - df['y_scaled'].ix[i0]) / T
         k = (df['y_scaled'].ix[i1] - df['y_scaled'].ix[i0]) / T
@@ -316,6 +418,22 @@ class Prophet(object):
 
 
     @staticmethod
     @staticmethod
     def logistic_growth_init(df):
     def logistic_growth_init(df):
+        """Initialize logistic growth.
+
+        Provides a strong initialization for logistic growth by calculating the
+        growth and offset parameters that pass the function through the first
+        and last points in the time series.
+
+        Parameters
+        ----------
+        df: pd.DataFrame with columns ds (date), cap_scaled (scaled capacity),
+            y_scaled (scaled time series), and t (scaled time).
+
+        Returns
+        -------
+        A tuple (k, m) with the rate (k) and offset (m) of the logistic growth
+        function.
+        """
         i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
         i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
         T = df['t'].ix[i1] - df['t'].ix[i0]
         T = df['t'].ix[i1] - df['t'].ix[i0]
 
 
@@ -337,14 +455,16 @@ class Prophet(object):
 
 
     # fb-block 7
     # fb-block 7
     def fit(self, df, **kwargs):
     def fit(self, df, **kwargs):
-        """Fit the Prophet model to data.
+        """Fit the Prophet model.
 
 
         Parameters
         Parameters
         ----------
         ----------
-        df: pd.DataFrame containing history. Must have columns 'ds', 'y', and
-            if logistic growth, 'cap'.
-        kwargs: Additional arguments passed to Stan's sampling or optimizing
-            function, as appropriate.
+        df: pd.DataFrame containing the history. Must have columns ds (date
+            type) and y, the time series. If self.growth is 'logistic', then
+            df must also have a column cap that specifies the capacity at
+            each ds.
+        kwargs: Additional arguments passed to the optimizing or sampling
+            functions in Stan.
 
 
         Returns
         Returns
         -------
         -------
@@ -415,12 +535,17 @@ class Prophet(object):
 
 
     # fb-block 8
     # fb-block 8
     def predict(self, df=None):
     def predict(self, df=None):
-        """Predict historical and future values for y.
+        """Predict using the prophet model.
 
 
-        Note: you must only pass in future dates here.
-        Historical dates are prepended before predictions are made.
+        Parameters
+        ----------
+        df: pd.DataFrame with dates for predictions (column ds), and capacity
+            (column cap) if logistic growth. If not provided, predictions are
+            made on the history.
 
 
-        `df` can be None, in which case we predict only on history.
+        Returns
+        -------
+        A pd.DataFrame with the forecast components.
         """
         """
         if df is None:
         if df is None:
             df = self.history.copy()
             df = self.history.copy()
@@ -437,6 +562,20 @@ class Prophet(object):
 
 
     @staticmethod
     @staticmethod
     def piecewise_linear(t, deltas, k, m, changepoint_ts):
     def piecewise_linear(t, deltas, k, m, changepoint_ts):
+        """Evaluate the piecewise linear function.
+
+        Parameters
+        ----------
+        t: np.array of times on which the function is evaluated.
+        deltas: np.array of rate changes at each changepoint.
+        k: Float initial rate.
+        m: Float initial offset.
+        changepoint_ts: np.array of changepoint times.
+
+        Returns
+        -------
+        Vector y(t).
+        """
         # Intercept changes
         # Intercept changes
         gammas = -changepoint_ts * deltas
         gammas = -changepoint_ts * deltas
         # Get cumulative slope and intercept at each t
         # Get cumulative slope and intercept at each t
@@ -450,6 +589,21 @@ class Prophet(object):
 
 
     @staticmethod
     @staticmethod
     def piecewise_logistic(t, cap, deltas, k, m, changepoint_ts):
     def piecewise_logistic(t, cap, deltas, k, m, changepoint_ts):
+        """Evaluate the piecewise logistic function.
+
+        Parameters
+        ----------
+        t: np.array of times on which the function is evaluated.
+        cap: np.array of capacities at each t.
+        deltas: np.array of rate changes at each changepoint.
+        k: Float initial rate.
+        m: Float initial offset.
+        changepoint_ts: np.array of changepoint times.
+
+        Returns
+        -------
+        Vector y(t).
+        """
         # Compute offset changes
         # Compute offset changes
         k_cum = np.concatenate((np.atleast_1d(k), np.cumsum(deltas) + k))
         k_cum = np.concatenate((np.atleast_1d(k), np.cumsum(deltas) + k))
         gammas = np.zeros(len(changepoint_ts))
         gammas = np.zeros(len(changepoint_ts))
@@ -468,6 +622,16 @@ class Prophet(object):
         return cap / (1 + np.exp(-k_t * (t - m_t)))
         return cap / (1 + np.exp(-k_t * (t - m_t)))
 
 
     def predict_trend(self, df):
     def predict_trend(self, df):
+        """Predict trend using the prophet model.
+
+        Parameters
+        ----------
+        df: Prediction dataframe.
+
+        Returns
+        -------
+        Vector with trend on prediction dates.
+        """
         k = np.nanmean(self.params['k'])
         k = np.nanmean(self.params['k'])
         m = np.nanmean(self.params['m'])
         m = np.nanmean(self.params['m'])
         deltas = np.nanmean(self.params['delta'], axis=0)
         deltas = np.nanmean(self.params['delta'], axis=0)
@@ -483,6 +647,16 @@ class Prophet(object):
         return trend * self.y_scale
         return trend * self.y_scale
 
 
     def predict_seasonal_components(self, df):
     def predict_seasonal_components(self, df):
+        """Predict seasonality broken down into components.
+
+        Parameters
+        ----------
+        df: Prediction dataframe.
+
+        Returns
+        -------
+        Dataframe with seasonal components.
+        """
         seasonal_features = self.make_all_seasonality_features(df)
         seasonal_features = self.make_all_seasonality_features(df)
         lower_p = 100 * (1.0 - self.interval_width) / 2
         lower_p = 100 * (1.0 - self.interval_width) / 2
         upper_p = 100 * (1.0 + self.interval_width) / 2
         upper_p = 100 * (1.0 + self.interval_width) / 2
@@ -520,6 +694,16 @@ class Prophet(object):
         return component_predictions
         return component_predictions
 
 
     def predict_uncertainty(self, df):
     def predict_uncertainty(self, df):
+        """Predict seasonality broken down into components.
+
+        Parameters
+        ----------
+        df: Prediction dataframe.
+
+        Returns
+        -------
+        Dataframe with uncertainty intervals.
+        """
         n_iterations = self.params['k'].shape[0]
         n_iterations = self.params['k'].shape[0]
         samp_per_iter = max(1, int(np.ceil(
         samp_per_iter = max(1, int(np.ceil(
             self.uncertainty_samples / float(n_iterations)
             self.uncertainty_samples / float(n_iterations)
@@ -549,6 +733,18 @@ class Prophet(object):
         return pd.DataFrame(series)
         return pd.DataFrame(series)
 
 
     def sample_model(self, df, seasonal_features, iteration):
     def sample_model(self, df, seasonal_features, iteration):
+        """Simulate observations from the extrapolated generative model.
+
+        Parameters
+        ----------
+        df: Prediction dataframe.
+        seasonal_features: pd.DataFrame of seasonal features.
+        iteration: Int sampling iteration to use parameters from.
+
+        Returns
+        -------
+        Dataframe with trend, seasonality, and yhat, each like df['t'].
+        """
         trend = self.sample_predictive_trend(df, iteration)
         trend = self.sample_predictive_trend(df, iteration)
 
 
         beta = self.params['beta'][iteration]
         beta = self.params['beta'][iteration]
@@ -564,6 +760,18 @@ class Prophet(object):
         })
         })
 
 
     def sample_predictive_trend(self, df, iteration):
     def sample_predictive_trend(self, df, iteration):
+        """Simulate the trend using the extrapolated generative model.
+
+        Parameters
+        ----------
+        df: Prediction dataframe.
+        seasonal_features: pd.DataFrame of seasonal features.
+        iteration: Int sampling iteration to use parameters from.
+
+        Returns
+        -------
+        np.array of simulated trend over df['t'].
+        """
         k = self.params['k'][iteration]
         k = self.params['k'][iteration]
         m = self.params['m'][iteration]
         m = self.params['m'][iteration]
         deltas = self.params['delta'][iteration]
         deltas = self.params['delta'][iteration]
@@ -610,6 +818,20 @@ class Prophet(object):
         return trend * self.y_scale
         return trend * self.y_scale
 
 
     def make_future_dataframe(self, periods, freq='D', include_history=True):
     def make_future_dataframe(self, periods, freq='D', include_history=True):
+        """Simulate the trend using the extrapolated generative model.
+
+        Parameters
+        ----------
+        periods: Int number of periods to forecast forward.
+        freq: Any valid frequency for pd.date_range, such as 'D' or 'M'.
+        include_history: Boolean to include the historical dates in the data
+            frame for predictions.
+
+        Returns
+        -------
+        pd.Dataframe that extends forward from the end of self.history for the
+        requested number of periods.
+        """
         last_date = self.history_dates.max()
         last_date = self.history_dates.max()
         dates = pd.date_range(
         dates = pd.date_range(
             start=last_date,
             start=last_date,