|
@@ -34,6 +34,8 @@ except ImportError:
|
|
|
# fb-block 2
|
|
|
|
|
|
class Prophet(object):
|
|
|
+ # Plotting default color for R/Python consistency
|
|
|
+ forecast_color = '#0072B2'
|
|
|
def __init__(
|
|
|
self,
|
|
|
growth='linear',
|
|
@@ -616,16 +618,15 @@ class Prophet(object):
|
|
|
-------
|
|
|
a matplotlib figure.
|
|
|
"""
|
|
|
- forecast_color = '#0072B2'
|
|
|
fig = plt.figure(facecolor='w', figsize=(10, 6))
|
|
|
ax = fig.add_subplot(111)
|
|
|
ax.plot(self.history['ds'].values, self.history['y'], 'k.')
|
|
|
- ax.plot(fcst['ds'].values, fcst['yhat'], ls='-', c=forecast_color)
|
|
|
+ ax.plot(fcst['ds'].values, fcst['yhat'], ls='-', c=self.forecast_color)
|
|
|
if 'cap' in fcst:
|
|
|
ax.plot(fcst['ds'].values, fcst['cap'], ls='--', c='k')
|
|
|
if uncertainty:
|
|
|
ax.fill_between(fcst['ds'].values, fcst['yhat_lower'],
|
|
|
- fcst['yhat_upper'], color=forecast_color, alpha=0.2)
|
|
|
+ fcst['yhat_upper'], color=self.forecast_color, alpha=0.2)
|
|
|
ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
|
|
|
ax.set_xlabel(xlabel)
|
|
|
ax.set_ylabel(ylabel)
|
|
@@ -648,87 +649,104 @@ class Prophet(object):
|
|
|
a matplotlib figure.
|
|
|
"""
|
|
|
# Identify components to be plotted
|
|
|
- plot_trend = True
|
|
|
- plot_holidays = self.holidays is not None
|
|
|
- plot_weekly = 'weekly' in fcst
|
|
|
- plot_yearly = 'yearly' in fcst
|
|
|
-
|
|
|
- npanel = plot_trend + plot_holidays + plot_weekly + plot_yearly
|
|
|
- forecast_color = '#0072B2'
|
|
|
- fig = plt.figure(facecolor='w', figsize=(9, 3 * npanel))
|
|
|
- panel_num = 1
|
|
|
- ax = fig.add_subplot(npanel, 1, panel_num)
|
|
|
- ax.plot(fcst['ds'].values, fcst['trend'], ls='-', c=forecast_color)
|
|
|
+ components = [('plot_trend', True),
|
|
|
+ ('plot_holidays', self.holidays is not None),
|
|
|
+ ('plot_weekly', 'weekly' in fcst),
|
|
|
+ ('plot_yearly', 'yearly' in fcst)]
|
|
|
+ components = [(plot, cond) for plot, cond in components if cond]
|
|
|
+ npanel = len(components)
|
|
|
+
|
|
|
+ fig, axes = plt.subplots(npanel, 1, facecolor='w', figsize=(9, 3 * npanel))
|
|
|
+
|
|
|
+ artists = []
|
|
|
+ for ax, plot in zip(axes, [getattr(self, plot) for plot, _ in components]):
|
|
|
+ artists += plot(fcst, ax=ax, uncertainty=uncertainty)
|
|
|
+
|
|
|
+ fig.tight_layout()
|
|
|
+ return artists
|
|
|
+
|
|
|
+ def plot_trend(self, fcst, ax=None, uncertainty=True, **plotargs):
|
|
|
+ artists = []
|
|
|
+ if not ax:
|
|
|
+ ax = fig.add_subplot(111)
|
|
|
+ artists += ax.plot(fcst['ds'].values, fcst['trend'], ls='-', c=self.forecast_color)
|
|
|
if 'cap' in fcst:
|
|
|
- ax.plot(fcst['ds'].values, fcst['cap'], ls='--', c='k')
|
|
|
+ artists += ax.plot(fcst['ds'].values, fcst['cap'], ls='--', c='k')
|
|
|
if uncertainty:
|
|
|
- ax.fill_between(
|
|
|
+ artists += [ax.fill_between(
|
|
|
fcst['ds'].values, fcst['trend_lower'], fcst['trend_upper'],
|
|
|
- color=forecast_color, alpha=0.2)
|
|
|
+ color=self.forecast_color, alpha=0.2)]
|
|
|
ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
|
|
|
ax.xaxis.set_major_locator(MaxNLocator(nbins=7))
|
|
|
ax.set_xlabel('ds')
|
|
|
ax.set_ylabel('trend')
|
|
|
-
|
|
|
- if plot_holidays:
|
|
|
- panel_num += 1
|
|
|
- ax = fig.add_subplot(npanel, 1, panel_num)
|
|
|
- holiday_comps = self.holidays['holiday'].unique()
|
|
|
- y_holiday = fcst[holiday_comps].sum(1)
|
|
|
- y_holiday_l = fcst[[h + '_lower' for h in holiday_comps]].sum(1)
|
|
|
- y_holiday_u = fcst[[h + '_upper' for h in holiday_comps]].sum(1)
|
|
|
- # NOTE the above CI calculation is incorrect if holidays overlap
|
|
|
- # in time. Since it is just for the visualization we will not
|
|
|
- # worry about it now.
|
|
|
- ax.plot(fcst['ds'].values, y_holiday, ls='-', c=forecast_color)
|
|
|
- if uncertainty:
|
|
|
- ax.fill_between(fcst['ds'].values, y_holiday_l, y_holiday_u,
|
|
|
- color=forecast_color, alpha=0.2)
|
|
|
- ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
|
|
|
- ax.xaxis.set_major_locator(MaxNLocator(nbins=7))
|
|
|
- ax.set_xlabel('ds')
|
|
|
- ax.set_ylabel('holidays')
|
|
|
-
|
|
|
- if plot_weekly:
|
|
|
- panel_num += 1
|
|
|
- ax = fig.add_subplot(npanel, 1, panel_num)
|
|
|
- df_s = fcst.copy()
|
|
|
- df_s['dow'] = df_s['ds'].dt.weekday_name
|
|
|
- df_s = df_s.groupby('dow').first()
|
|
|
- days = pd.date_range(start='2017-01-01', periods=7).weekday_name
|
|
|
- y_weekly = [df_s.loc[d]['weekly'] for d in days]
|
|
|
- y_weekly_l = [df_s.loc[d]['weekly_lower'] for d in days]
|
|
|
- y_weekly_u = [df_s.loc[d]['weekly_upper'] for d in days]
|
|
|
- ax.plot(range(len(days)), y_weekly, ls='-', c=forecast_color)
|
|
|
- if uncertainty:
|
|
|
- ax.fill_between(range(len(days)), y_weekly_l, y_weekly_u,
|
|
|
- color=forecast_color, alpha=0.2)
|
|
|
- ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
|
|
|
- ax.set_xticks(range(len(days)))
|
|
|
- ax.set_xticklabels(days)
|
|
|
- ax.set_xlabel('Day of week')
|
|
|
- ax.set_ylabel('weekly')
|
|
|
-
|
|
|
- if plot_yearly:
|
|
|
- panel_num += 1
|
|
|
+ return artists
|
|
|
+
|
|
|
+
|
|
|
+ def plot_holidays(self, fcst, ax=None, uncertainty=True):
|
|
|
+ artists = []
|
|
|
+ if not ax:
|
|
|
+ ax = fig.add_subplot(111)
|
|
|
+ holiday_comps = self.holidays['holiday'].unique()
|
|
|
+ y_holiday = fcst[holiday_comps].sum(1)
|
|
|
+ y_holiday_l = fcst[[h + '_lower' for h in holiday_comps]].sum(1)
|
|
|
+ y_holiday_u = fcst[[h + '_upper' for h in holiday_comps]].sum(1)
|
|
|
+ # NOTE the above CI calculation is incorrect if holidays overlap
|
|
|
+ # in time. Since it is just for the visualization we will not
|
|
|
+ # worry about it now.
|
|
|
+ artists += ax.plot(fcst['ds'].values, y_holiday, ls='-', c=self.forecast_color)
|
|
|
+ if uncertainty:
|
|
|
+ artists += [ax.fill_between(fcst['ds'].values, y_holiday_l, y_holiday_u,
|
|
|
+ color=self.forecast_color, alpha=0.2)]
|
|
|
+ ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
|
|
|
+ ax.xaxis.set_major_locator(MaxNLocator(nbins=7))
|
|
|
+ ax.set_xlabel('ds')
|
|
|
+ ax.set_ylabel('holidays')
|
|
|
+ return artists
|
|
|
+
|
|
|
+ def plot_weekly(self, fcst, ax=None, uncertainty=True):
|
|
|
+ artists = []
|
|
|
+ if not ax:
|
|
|
+ ax = fig.add_subplot(111)
|
|
|
+ df_s = fcst.copy()
|
|
|
+ df_s['dow'] = df_s['ds'].dt.weekday_name
|
|
|
+ df_s = df_s.groupby('dow').first()
|
|
|
+ days = pd.date_range(start='2017-01-01', periods=7).weekday_name
|
|
|
+ y_weekly = [df_s.loc[d]['weekly'] for d in days]
|
|
|
+ y_weekly_l = [df_s.loc[d]['weekly_lower'] for d in days]
|
|
|
+ y_weekly_u = [df_s.loc[d]['weekly_upper'] for d in days]
|
|
|
+ artists += ax.plot(range(len(days)), y_weekly, ls='-', c=self.forecast_color)
|
|
|
+ if uncertainty:
|
|
|
+ artists += [ax.fill_between(range(len(days)), y_weekly_l, y_weekly_u,
|
|
|
+ color=self.forecast_color, alpha=0.2)]
|
|
|
+ ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
|
|
|
+ ax.set_xticks(range(len(days)))
|
|
|
+ ax.set_xticklabels(days)
|
|
|
+ ax.set_xlabel('Day of week')
|
|
|
+ ax.set_ylabel('weekly')
|
|
|
+ return artists
|
|
|
+
|
|
|
+ def plot_yearly(self, fcst, ax=None, uncertainty=True):
|
|
|
+ artists = []
|
|
|
+ if not ax:
|
|
|
ax = fig.add_subplot(npanel, 1, panel_num)
|
|
|
- df_s = fcst.copy()
|
|
|
- df_s['doy'] = df_s['ds'].map(lambda x: x.strftime('2000-%m-%d'))
|
|
|
- df_s = df_s.groupby('doy').first().sort_index()
|
|
|
- ax.plot(pd.to_datetime(df_s.index), df_s['yearly'], ls='-',
|
|
|
- c=forecast_color)
|
|
|
- if uncertainty:
|
|
|
- ax.fill_between(
|
|
|
- pd.to_datetime(df_s.index), df_s['yearly_lower'],
|
|
|
- df_s['yearly_upper'], color=forecast_color, alpha=0.2)
|
|
|
- ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
|
|
|
- months = MonthLocator(range(1, 13), bymonthday=1, interval=2)
|
|
|
- ax.xaxis.set_major_formatter(DateFormatter('%B %-d'))
|
|
|
- ax.xaxis.set_major_locator(months)
|
|
|
- ax.set_xlabel('Day of year')
|
|
|
- ax.set_ylabel('yearly')
|
|
|
+ df_s = fcst.copy()
|
|
|
+ df_s['doy'] = df_s['ds'].map(lambda x: x.strftime('2000-%m-%d'))
|
|
|
+ df_s = df_s.groupby('doy').first().sort_index()
|
|
|
+ artists += ax.plot(pd.to_datetime(df_s.index), df_s['yearly'], ls='-',
|
|
|
+ c=self.forecast_color)
|
|
|
+ if uncertainty:
|
|
|
+ artists += [ax.fill_between(
|
|
|
+ pd.to_datetime(df_s.index), df_s['yearly_lower'],
|
|
|
+ df_s['yearly_upper'], color=self.forecast_color, alpha=0.2)]
|
|
|
+ ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
|
|
|
+ months = MonthLocator(range(1, 13), bymonthday=1, interval=2)
|
|
|
+ ax.xaxis.set_major_formatter(DateFormatter('%B %-d'))
|
|
|
+ ax.xaxis.set_major_locator(months)
|
|
|
+ ax.set_xlabel('Day of year')
|
|
|
+ ax.set_ylabel('yearly')
|
|
|
+ return artists
|
|
|
+
|
|
|
|
|
|
- fig.tight_layout()
|
|
|
- return fig
|
|
|
|
|
|
# fb-block 9
|