|
@@ -0,0 +1,63 @@
|
|
|
+data {
|
|
|
+ int T; // Sample size
|
|
|
+ int<lower=1> K; // Number of seasonal vectors
|
|
|
+ vector[T] t; // Day
|
|
|
+ vector[T] cap; // Capacities
|
|
|
+ vector[T] y; // Time-series
|
|
|
+ int S; // Number of split points
|
|
|
+ matrix[T, S] A; // Split indicators
|
|
|
+ int s_indx[S]; // Index of split points
|
|
|
+ matrix[T,K] X; // season vectors
|
|
|
+ real<lower=0> sigma; // scale on seasonality prior
|
|
|
+ real<lower=0> tau; // scale on changepoints prior
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+transformed data {
|
|
|
+ int s_ext[S + 1]; // Segment endpoints
|
|
|
+ for (j in 1:S) {
|
|
|
+ s_ext[j] = s_indx[j];
|
|
|
+ }
|
|
|
+ s_ext[S + 1] = T + 1; // Used for the m_adj loop below.
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+parameters {
|
|
|
+ real k; // Base growth rate
|
|
|
+ real m; // offset
|
|
|
+ vector[S] delta; // Rate adjustments
|
|
|
+ real<lower=0> sigma_obs; // Observation noise (incl. seasonal variation)
|
|
|
+ vector[K] beta; // seasonal vector
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+transformed parameters {
|
|
|
+ vector[S] gamma; // adjusted offsets, for piecewise continuity
|
|
|
+ vector[S + 1] k_s; // actual rate in each segment
|
|
|
+ real m_pr;
|
|
|
+
|
|
|
+ // Compute the rate in each segment
|
|
|
+ k_s[1] = k;
|
|
|
+ for (i in 1:S) {
|
|
|
+ k_s[i + 1] = k_s[i] + delta[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ // Piecewise offsets
|
|
|
+ m_pr = m; // The offset in the previous segment
|
|
|
+ for (i in 1:S) {
|
|
|
+ gamma[i] = (t[s_indx[i]] - m_pr) * (1 - k_s[i] / k_s[i + 1]);
|
|
|
+ m_pr = m_pr + gamma[i]; // update for the next segment
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+model {
|
|
|
+ //priors
|
|
|
+ k ~ normal(0, 5);
|
|
|
+ m ~ normal(0, 5);
|
|
|
+ delta ~ double_exponential(0, tau);
|
|
|
+ sigma_obs ~ normal(0, 0.1);
|
|
|
+ beta ~ normal(0, sigma);
|
|
|
+
|
|
|
+ // Likelihood
|
|
|
+ y ~ normal(cap ./ (1 + exp(-(k + A * delta) .* (t - (m + A * gamma)))) + X * beta, sigma_obs);
|
|
|
+}
|