# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import itertools import numpy as np import pandas as pd # fb-block 1 start import os from unittest import TestCase from fbprophet import Prophet DATA = pd.read_csv( os.path.join(os.path.dirname(__file__), 'data.csv'), parse_dates=['ds'], ) DATA2 = pd.read_csv( os.path.join(os.path.dirname(__file__), 'data2.csv'), parse_dates=['ds'], ) # fb-block 1 end # fb-block 2 class TestProphet(TestCase): def test_fit_predict(self): N = DATA.shape[0] train = DATA.head(N // 2) future = DATA.tail(N // 2) forecaster = Prophet() forecaster.fit(train) forecaster.predict(future) def test_fit_predict_no_seasons(self): N = DATA.shape[0] train = DATA.head(N // 2) future = DATA.tail(N // 2) forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False) forecaster.fit(train) forecaster.predict(future) def test_fit_predict_no_changepoints(self): N = DATA.shape[0] train = DATA.head(N // 2) future = DATA.tail(N // 2) forecaster = Prophet(n_changepoints=0) forecaster.fit(train) forecaster.predict(future) def test_fit_changepoint_not_in_history(self): train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')] future = pd.DataFrame({'ds': DATA['ds']}) forecaster = Prophet(changepoints=['2013-06-06']) forecaster.fit(train) forecaster.predict(future) def test_fit_predict_duplicates(self): N = DATA.shape[0] train1 = DATA.head(N // 2).copy() train2 = DATA.head(N // 2).copy() train2['y'] += 10 train = train1.append(train2) future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)}) forecaster = Prophet() forecaster.fit(train) forecaster.predict(future) def test_fit_predict_constant_history(self): N = DATA.shape[0] train = DATA.head(N // 2).copy() train['y'] = 20 future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)}) m = Prophet() m.fit(train) fcst = m.predict(future) self.assertEqual(fcst['yhat'].values[-1], 20) train['y'] = 0 future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)}) m = Prophet() m.fit(train) fcst = m.predict(future) self.assertEqual(fcst['yhat'].values[-1], 0) def test_setup_dataframe(self): m = Prophet() N = DATA.shape[0] history = DATA.head(N // 2).copy() history = m.setup_dataframe(history, initialize_scales=True) self.assertTrue('t' in history) self.assertEqual(history['t'].min(), 0.0) self.assertEqual(history['t'].max(), 1.0) self.assertTrue('y_scaled' in history) self.assertEqual(history['y_scaled'].max(), 1.0) def test_logistic_floor(self): m = Prophet(growth='logistic') N = DATA.shape[0] history = DATA.head(N // 2).copy() history['floor'] = 10. history['cap'] = 80. future = DATA.tail(N // 2).copy() future['cap'] = 80. future['floor'] = 10. m.fit(history, algorithm='Newton') self.assertTrue(m.logistic_floor) self.assertTrue('floor' in m.history) self.assertAlmostEqual(m.history['y_scaled'][0], 1.) fcst1 = m.predict(future) m2 = Prophet(growth='logistic') history2 = history.copy() history2['y'] += 10. history2['floor'] += 10. history2['cap'] += 10. future['cap'] += 10. future['floor'] += 10. m2.fit(history2, algorithm='Newton') self.assertAlmostEqual(m2.history['y_scaled'][0], 1.) fcst2 = m2.predict(future) fcst2['yhat'] -= 10. # Check for approximate shift invariance self.assertTrue((np.abs(fcst1['yhat'] - fcst2['yhat']) < 1).all()) def test_get_changepoints(self): m = Prophet() N = DATA.shape[0] history = DATA.head(N // 2).copy() history = m.setup_dataframe(history, initialize_scales=True) m.history = history m.set_changepoints() cp = m.changepoints_t self.assertEqual(cp.shape[0], m.n_changepoints) self.assertEqual(len(cp.shape), 1) self.assertTrue(cp.min() > 0) self.assertTrue(cp.max() < N) mat = m.get_changepoint_matrix() self.assertEqual(mat.shape[0], N // 2) self.assertEqual(mat.shape[1], m.n_changepoints) def test_get_zero_changepoints(self): m = Prophet(n_changepoints=0) N = DATA.shape[0] history = DATA.head(N // 2).copy() history = m.setup_dataframe(history, initialize_scales=True) m.history = history m.set_changepoints() cp = m.changepoints_t self.assertEqual(cp.shape[0], 1) self.assertEqual(cp[0], 0) mat = m.get_changepoint_matrix() self.assertEqual(mat.shape[0], N // 2) self.assertEqual(mat.shape[1], 1) def test_override_n_changepoints(self): m = Prophet() history = DATA.head(20).copy() history = m.setup_dataframe(history, initialize_scales=True) m.history = history m.set_changepoints() self.assertEqual(m.n_changepoints, 15) cp = m.changepoints_t self.assertEqual(cp.shape[0], 15) def test_fourier_series_weekly(self): mat = Prophet.fourier_series(DATA['ds'], 7, 3) # These are from the R forecast package directly. true_values = np.array([ 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689, ]) self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0) def test_fourier_series_yearly(self): mat = Prophet.fourier_series(DATA['ds'], 365.25, 3) # These are from the R forecast package directly. true_values = np.array([ 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572, ]) self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0) def test_growth_init(self): model = Prophet(growth='logistic') history = DATA.iloc[:468].copy() history['cap'] = history['y'].max() history = model.setup_dataframe(history, initialize_scales=True) k, m = model.linear_growth_init(history) self.assertAlmostEqual(k, 0.3055671) self.assertAlmostEqual(m, 0.5307511) k, m = model.logistic_growth_init(history) self.assertAlmostEqual(k, 1.507925, places=4) self.assertAlmostEqual(m, -0.08167497, places=4) def test_piecewise_linear(self): model = Prophet() t = np.arange(11.) m = 0 k = 1.0 deltas = np.array([0.5]) changepoint_ts = np.array([5]) y = model.piecewise_linear(t, deltas, k, m, changepoint_ts) y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.5, 8.0, 9.5, 11.0, 12.5]) self.assertEqual((y - y_true).sum(), 0.0) t = t[8:] y_true = y_true[8:] y = model.piecewise_linear(t, deltas, k, m, changepoint_ts) self.assertEqual((y - y_true).sum(), 0.0) def test_piecewise_logistic(self): model = Prophet() t = np.arange(11.) cap = np.ones(11) * 10 m = 0 k = 1.0 deltas = np.array([0.5]) changepoint_ts = np.array([5]) y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts) y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138, 9.933071, 9.984988, 9.996646, 9.999252, 9.999833, 9.999963]) self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5) t = t[8:] y_true = y_true[8:] cap = cap[8:] y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts) self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5) def test_holidays(self): holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['xmas'], 'lower_window': [-1], 'upper_window': [0], }) model = Prophet(holidays=holidays) df = pd.DataFrame({ 'ds': pd.date_range('2016-12-20', '2016-12-31') }) feats, priors = model.make_holiday_features(df['ds']) # 11 columns generated even though only 8 overlap self.assertEqual(feats.shape, (df.shape[0], 2)) self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0) self.assertEqual(priors, [10., 10.]) # Default prior holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['xmas'], 'lower_window': [-1], 'upper_window': [10], }) feats, priors = Prophet(holidays=holidays).make_holiday_features(df['ds']) # 12 columns generated even though only 8 overlap self.assertEqual(feats.shape, (df.shape[0], 12)) self.assertEqual(priors, list(10. * np.ones(12))) # Check prior specifications holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']), 'holiday': ['xmas', 'xmas'], 'lower_window': [-1, -1], 'upper_window': [0, 0], 'prior_scale': [5., 5.], }) feats, priors = Prophet(holidays=holidays).make_holiday_features(df['ds']) self.assertEqual(priors, [5., 5.]) # 2 different priors holidays2 = pd.DataFrame({ 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']), 'holiday': ['seans-bday'] * 2, 'lower_window': [0] * 2, 'upper_window': [1] * 2, 'prior_scale': [8] * 2, }) holidays2 = pd.concat((holidays, holidays2)) feats, priors = Prophet(holidays=holidays2).make_holiday_features(df['ds']) self.assertEqual(priors, [8., 8., 5., 5.]) holidays2 = pd.DataFrame({ 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']), 'holiday': ['seans-bday'] * 2, 'lower_window': [0] * 2, 'upper_window': [1] * 2, }) holidays2 = pd.concat((holidays, holidays2)) feats, priors = Prophet( holidays=holidays2, holidays_prior_scale=4 ).make_holiday_features(df['ds']) self.assertEqual(priors, [4., 4., 5., 5.]) # Check incompatible priors holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2016-12-25', '2016-12-27']), 'holiday': ['xmasish', 'xmasish'], 'lower_window': [-1, -1], 'upper_window': [0, 0], 'prior_scale': [5., 6.], }) with self.assertRaises(ValueError): Prophet(holidays=holidays).make_holiday_features(df['ds']) def test_fit_with_holidays(self): holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']), 'holiday': ['seans-bday'] * 2, 'lower_window': [0] * 2, 'upper_window': [1] * 2, }) model = Prophet(holidays=holidays, uncertainty_samples=0) model.fit(DATA).predict() def test_make_future_dataframe(self): N = 468 train = DATA.head(N // 2) forecaster = Prophet() forecaster.fit(train) future = forecaster.make_future_dataframe(periods=3, freq='D', include_history=False) correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28']) self.assertEqual(len(future), 3) for i in range(3): self.assertEqual(future.iloc[i]['ds'], correct[i]) future = forecaster.make_future_dataframe(periods=3, freq='M', include_history=False) correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30']) self.assertEqual(len(future), 3) for i in range(3): self.assertEqual(future.iloc[i]['ds'], correct[i]) def test_auto_weekly_seasonality(self): # Should be enabled N = 15 train = DATA.head(N) m = Prophet() self.assertEqual(m.weekly_seasonality, 'auto') m.fit(train) self.assertIn('weekly', m.seasonalities) self.assertEqual(m.seasonalities['weekly'], {'period': 7, 'fourier_order': 3, 'prior_scale': 10.}) # Should be disabled due to too short history N = 9 train = DATA.head(N) m = Prophet() m.fit(train) self.assertNotIn('weekly', m.seasonalities) m = Prophet(weekly_seasonality=True) m.fit(train) self.assertIn('weekly', m.seasonalities) # Should be False due to weekly spacing train = DATA.iloc[::7, :] m = Prophet() m.fit(train) self.assertNotIn('weekly', m.seasonalities) m = Prophet(weekly_seasonality=2, seasonality_prior_scale=3.) m.fit(DATA) self.assertEqual(m.seasonalities['weekly'], {'period': 7, 'fourier_order': 2, 'prior_scale': 3.}) def test_auto_yearly_seasonality(self): # Should be enabled m = Prophet() self.assertEqual(m.yearly_seasonality, 'auto') m.fit(DATA) self.assertIn('yearly', m.seasonalities) self.assertEqual( m.seasonalities['yearly'], {'period': 365.25, 'fourier_order': 10, 'prior_scale': 10.}, ) # Should be disabled due to too short history N = 240 train = DATA.head(N) m = Prophet() m.fit(train) self.assertNotIn('yearly', m.seasonalities) m = Prophet(yearly_seasonality=True) m.fit(train) self.assertIn('yearly', m.seasonalities) m = Prophet(yearly_seasonality=7, seasonality_prior_scale=3.) m.fit(DATA) self.assertEqual( m.seasonalities['yearly'], {'period': 365.25, 'fourier_order': 7, 'prior_scale': 3.}, ) def test_auto_daily_seasonality(self): # Should be enabled m = Prophet() self.assertEqual(m.daily_seasonality, 'auto') m.fit(DATA2) self.assertIn('daily', m.seasonalities) self.assertEqual(m.seasonalities['daily'], {'period': 1, 'fourier_order': 4, 'prior_scale': 10.}) # Should be disabled due to too short history N = 430 train = DATA2.head(N) m = Prophet() m.fit(train) self.assertNotIn('daily', m.seasonalities) m = Prophet(daily_seasonality=True) m.fit(train) self.assertIn('daily', m.seasonalities) m = Prophet(daily_seasonality=7, seasonality_prior_scale=3.) m.fit(DATA2) self.assertEqual(m.seasonalities['daily'], {'period': 1, 'fourier_order': 7, 'prior_scale': 3.}) m = Prophet() m.fit(DATA) self.assertNotIn('daily', m.seasonalities) def test_subdaily_holidays(self): holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2017-01-02']), 'holiday': ['special_day'], }) m = Prophet(holidays=holidays) m.fit(DATA2) fcst = m.predict() self.assertEqual(sum(fcst['special_day'] == 0), 575) def test_custom_seasonality(self): holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2017-01-02']), 'holiday': ['special_day'], 'prior_scale': [4.], }) m = Prophet(holidays=holidays) m.add_seasonality(name='monthly', period=30, fourier_order=5, prior_scale=2.) self.assertEqual(m.seasonalities['monthly'], {'period': 30, 'fourier_order': 5, 'prior_scale': 2.}) with self.assertRaises(ValueError): m.add_seasonality(name='special_day', period=30, fourier_order=5) with self.assertRaises(ValueError): m.add_seasonality(name='trend', period=30, fourier_order=5) m.add_seasonality(name='weekly', period=30, fourier_order=5) # Test priors m = Prophet(holidays=holidays, yearly_seasonality=False) m.add_seasonality(name='monthly', period=30, fourier_order=5, prior_scale=2.) m.fit(DATA.copy()) seasonal_features, prior_scales = m.make_all_seasonality_features( m.history) if seasonal_features.columns[0] == 'monthly_delim_1': true = [2.] * 10 + [10.] * 6 + [4.] else: true = [10.] * 6 + [2.] * 10 + [4.] self.assertEqual(prior_scales, true) def test_added_regressors(self): m = Prophet() m.add_regressor('binary_feature', prior_scale=0.2) m.add_regressor('numeric_feature', prior_scale=0.5) m.add_regressor('binary_feature2', standardize=True) df = DATA.copy() df['binary_feature'] = [0] * 255 + [1] * 255 df['numeric_feature'] = range(510) with self.assertRaises(ValueError): # Require all regressors in df m.fit(df) df['binary_feature2'] = [1] * 100 + [0] * 410 m.fit(df) # Check that standardizations are correctly set self.assertEqual( m.extra_regressors['binary_feature'], {'prior_scale': 0.2, 'mu': 0, 'std': 1, 'standardize': 'auto'}, ) self.assertEqual( m.extra_regressors['numeric_feature']['prior_scale'], 0.5) self.assertEqual( m.extra_regressors['numeric_feature']['mu'], 254.5) self.assertAlmostEqual( m.extra_regressors['numeric_feature']['std'], 147.368585, places=5) self.assertEqual( m.extra_regressors['binary_feature2']['prior_scale'], 10.) self.assertAlmostEqual( m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5) self.assertAlmostEqual( m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5) # Check that standardization is done correctly df2 = m.setup_dataframe(df.copy()) self.assertEqual(df2['binary_feature'][0], 0) self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4) self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4) # Check that feature matrix and prior scales are correctly constructed seasonal_features, prior_scales = m.make_all_seasonality_features(df2) self.assertIn('binary_feature', seasonal_features) self.assertIn('numeric_feature', seasonal_features) self.assertIn('binary_feature2', seasonal_features) self.assertEqual(seasonal_features.shape[1], 29) self.assertEqual(set(prior_scales[26:]), set([0.2, 0.5, 10.])) # Check that forecast components are reasonable future = pd.DataFrame({ 'ds': ['2014-06-01'], 'binary_feature': [0], 'numeric_feature': [10], }) with self.assertRaises(ValueError): m.predict(future) future['binary_feature2'] = 0 fcst = m.predict(future) self.assertEqual(fcst.shape[1], 31) self.assertEqual(fcst['binary_feature'][0], 0) self.assertAlmostEqual( fcst['extra_regressors'][0], fcst['numeric_feature'][0] + fcst['binary_feature2'][0], ) self.assertAlmostEqual( fcst['seasonalities'][0], fcst['yearly'][0] + fcst['weekly'][0], ) self.assertAlmostEqual( fcst['seasonal'][0], fcst['seasonalities'][0] + fcst['extra_regressors'][0], ) self.assertAlmostEqual( fcst['yhat'][0], fcst['trend'][0] + fcst['seasonal'][0], ) # Check fails if constant extra regressor df['constant_feature'] = 5 m = Prophet() m.add_regressor('constant_feature') with self.assertRaises(ValueError): m.fit(df.copy()) def test_copy(self): df = DATA.copy() df['cap'] = 200. df['binary_feature'] = [0] * 255 + [1] * 255 # These values are created except for its default values holiday = pd.DataFrame( {'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['x']}) products = itertools.product( ['linear', 'logistic'], # growth [None, pd.to_datetime(['2016-12-25'])], # changepoints [3], # n_changepoints [True, False], # yearly_seasonality [True, False], # weekly_seasonality [True, False], # daily_seasonality [None, holiday], # holidays [1.1], # seasonality_prior_scale [1.1], # holidays_prior_scale [0.1], # changepoint_prior_scale [100], # mcmc_samples [0.9], # interval_width [200] # uncertainty_samples ) # Values should be copied correctly for product in products: m1 = Prophet(*product) m1.history = m1.setup_dataframe( df.copy(), initialize_scales=True) m1.set_auto_seasonalities() m2 = m1.copy() self.assertEqual(m1.growth, m2.growth) self.assertEqual(m1.n_changepoints, m2.n_changepoints) self.assertEqual(m1.changepoints, m2.changepoints) self.assertEqual(False, m2.yearly_seasonality) self.assertEqual(False, m2.weekly_seasonality) self.assertEqual(False, m2.daily_seasonality) self.assertEqual( m1.yearly_seasonality, 'yearly' in m2.seasonalities) self.assertEqual( m1.weekly_seasonality, 'weekly' in m2.seasonalities) self.assertEqual( m1.daily_seasonality, 'daily' in m2.seasonalities) if m1.holidays is None: self.assertEqual(m1.holidays, m2.holidays) else: self.assertTrue((m1.holidays == m2.holidays).values.all()) self.assertEqual(m1.seasonality_prior_scale, m2.seasonality_prior_scale) self.assertEqual(m1.changepoint_prior_scale, m2.changepoint_prior_scale) self.assertEqual(m1.holidays_prior_scale, m2.holidays_prior_scale) self.assertEqual(m1.mcmc_samples, m2.mcmc_samples) self.assertEqual(m1.interval_width, m2.interval_width) self.assertEqual(m1.uncertainty_samples, m2.uncertainty_samples) # Check for cutoff and custom seasonality and extra regressors changepoints = pd.date_range('2012-06-15', '2012-09-15') cutoff = pd.Timestamp('2012-07-25') m1 = Prophet(changepoints=changepoints) m1.add_seasonality('custom', 10, 5) m1.add_regressor('binary_feature') m1.fit(df) m2 = m1.copy(cutoff=cutoff) changepoints = changepoints[changepoints <= cutoff] self.assertTrue((changepoints == m2.changepoints).all()) self.assertTrue('custom' in m2.seasonalities) self.assertTrue('binary_feature' in m2.extra_regressors)