# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import numpy as np import pandas as pd # fb-block 1 start from unittest import TestCase from fbprophet import Prophet # fb-block 1 end # fb-block 2 DATA = pd.read_csv( os.path.join(os.path.dirname(__file__), 'data.csv'), parse_dates=['ds'], ) DATA2 = pd.read_csv( os.path.join(os.path.dirname(__file__), 'data2.csv'), parse_dates=['ds'], ) class TestProphet(TestCase): def test_fit_predict(self): N = DATA.shape[0] train = DATA.head(N // 2) future = DATA.tail(N // 2) forecaster = Prophet() forecaster.fit(train) forecaster.predict(future) def test_fit_predict_no_seasons(self): N = DATA.shape[0] train = DATA.head(N // 2) future = DATA.tail(N // 2) forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False) forecaster.fit(train) forecaster.predict(future) def test_fit_predict_no_changepoints(self): N = DATA.shape[0] train = DATA.head(N // 2) future = DATA.tail(N // 2) forecaster = Prophet(n_changepoints=0) forecaster.fit(train) forecaster.predict(future) def test_fit_changepoint_not_in_history(self): train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')] train[(train['ds'] > '2014-01-01')] += 20 future = pd.DataFrame({'ds': DATA['ds']}) forecaster = Prophet(changepoints=['2013-06-06']) forecaster.fit(train) forecaster.predict(future) def test_fit_predict_duplicates(self): N = DATA.shape[0] train1 = DATA.head(N // 2).copy() train2 = DATA.head(N // 2).copy() train2['y'] += 10 train = train1.append(train2) future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)}) forecaster = Prophet() forecaster.fit(train) forecaster.predict(future) def test_setup_dataframe(self): m = Prophet() N = DATA.shape[0] history = DATA.head(N // 2).copy() history = m.setup_dataframe(history, initialize_scales=True) self.assertTrue('t' in history) self.assertEqual(history['t'].min(), 0.0) self.assertEqual(history['t'].max(), 1.0) self.assertTrue('y_scaled' in history) self.assertEqual(history['y_scaled'].max(), 1.0) def test_get_changepoints(self): m = Prophet() N = DATA.shape[0] history = DATA.head(N // 2).copy() history = m.setup_dataframe(history, initialize_scales=True) m.history = history m.set_changepoints() cp = m.changepoints_t self.assertEqual(cp.shape[0], m.n_changepoints) self.assertEqual(len(cp.shape), 1) self.assertTrue(cp.min() > 0) self.assertTrue(cp.max() < N) mat = m.get_changepoint_matrix() self.assertEqual(mat.shape[0], N // 2) self.assertEqual(mat.shape[1], m.n_changepoints) def test_get_zero_changepoints(self): m = Prophet(n_changepoints=0) N = DATA.shape[0] history = DATA.head(N // 2).copy() history = m.setup_dataframe(history, initialize_scales=True) m.history = history m.set_changepoints() cp = m.changepoints_t self.assertEqual(cp.shape[0], 1) self.assertEqual(cp[0], 0) mat = m.get_changepoint_matrix() self.assertEqual(mat.shape[0], N // 2) self.assertEqual(mat.shape[1], 1) def test_fourier_series_weekly(self): mat = Prophet.fourier_series(DATA['ds'], 7, 3) # These are from the R forecast package directly. true_values = np.array([ 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689, ]) self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0) def test_fourier_series_yearly(self): mat = Prophet.fourier_series(DATA['ds'], 365.25, 3) # These are from the R forecast package directly. true_values = np.array([ 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572, ]) self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0) def test_growth_init(self): model = Prophet(growth='logistic') history = DATA.iloc[:468].copy() history['cap'] = history['y'].max() history = model.setup_dataframe(history, initialize_scales=True) k, m = model.linear_growth_init(history) self.assertAlmostEqual(k, 0.3055671) self.assertAlmostEqual(m, 0.5307511) k, m = model.logistic_growth_init(history) self.assertAlmostEqual(k, 1.507925, places=4) self.assertAlmostEqual(m, -0.08167497, places=4) def test_piecewise_linear(self): model = Prophet() t = np.arange(11.) m = 0 k = 1.0 deltas = np.array([0.5]) changepoint_ts = np.array([5]) y = model.piecewise_linear(t, deltas, k, m, changepoint_ts) y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.5, 8.0, 9.5, 11.0, 12.5]) self.assertEqual((y - y_true).sum(), 0.0) t = t[8:] y_true = y_true[8:] y = model.piecewise_linear(t, deltas, k, m, changepoint_ts) self.assertEqual((y - y_true).sum(), 0.0) def test_piecewise_logistic(self): model = Prophet() t = np.arange(11.) cap = np.ones(11) * 10 m = 0 k = 1.0 deltas = np.array([0.5]) changepoint_ts = np.array([5]) y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts) y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138, 9.933071, 9.984988, 9.996646, 9.999252, 9.999833, 9.999963]) self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5) t = t[8:] y_true = y_true[8:] cap = cap[8:] y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts) self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5) def test_holidays(self): holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['xmas'], 'lower_window': [-1], 'upper_window': [0], }) model = Prophet(holidays=holidays) df = pd.DataFrame({ 'ds': pd.date_range('2016-12-20', '2016-12-31') }) feats = model.make_holiday_features(df['ds']) # 11 columns generated even though only 8 overlap self.assertEqual(feats.shape, (df.shape[0], 2)) self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0) holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['xmas'], 'lower_window': [-1], 'upper_window': [10], }) feats = Prophet(holidays=holidays).make_holiday_features(df['ds']) # 12 columns generated even though only 8 overlap self.assertEqual(feats.shape, (df.shape[0], 12)) def test_fit_with_holidays(self): holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']), 'holiday': ['seans-bday'] * 2, 'lower_window': [0] * 2, 'upper_window': [1] * 2, }) model = Prophet(holidays=holidays, uncertainty_samples=0) model.fit(DATA).predict() def test_make_future_dataframe(self): N = 468 train = DATA.head(N // 2) forecaster = Prophet() forecaster.fit(train) future = forecaster.make_future_dataframe(periods=3, freq='D', include_history=False) correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28']) self.assertEqual(len(future), 3) for i in range(3): self.assertEqual(future.iloc[i]['ds'], correct[i]) future = forecaster.make_future_dataframe(periods=3, freq='M', include_history=False) correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30']) self.assertEqual(len(future), 3) for i in range(3): self.assertEqual(future.iloc[i]['ds'], correct[i]) def test_auto_weekly_seasonality(self): # Should be enabled N = 15 train = DATA.head(N) m = Prophet() self.assertEqual(m.weekly_seasonality, 'auto') m.fit(train) self.assertIn('weekly', m.seasonalities) self.assertEqual(m.seasonalities['weekly'], (7, 3)) # Should be disabled due to too short history N = 9 train = DATA.head(N) m = Prophet() m.fit(train) self.assertNotIn('weekly', m.seasonalities) m = Prophet(weekly_seasonality=True) m.fit(train) self.assertIn('weekly', m.seasonalities) # Should be False due to weekly spacing train = DATA.iloc[::7, :] m = Prophet() m.fit(train) self.assertNotIn('weekly', m.seasonalities) m = Prophet(weekly_seasonality=2) m.fit(DATA) self.assertEqual(m.seasonalities['weekly'], (7, 2)) def test_auto_yearly_seasonality(self): # Should be enabled m = Prophet() self.assertEqual(m.yearly_seasonality, 'auto') m.fit(DATA) self.assertIn('yearly', m.seasonalities) self.assertEqual(m.seasonalities['yearly'], (365.25, 10)) # Should be disabled due to too short history N = 240 train = DATA.head(N) m = Prophet() m.fit(train) self.assertNotIn('yearly', m.seasonalities) m = Prophet(yearly_seasonality=True) m.fit(train) self.assertIn('yearly', m.seasonalities) m = Prophet(yearly_seasonality=7) m.fit(DATA) self.assertEqual(m.seasonalities['yearly'], (365.25, 7)) def test_auto_daily_seasonality(self): # Should be enabled m = Prophet() self.assertEqual(m.yearly_seasonality, 'auto') m.fit(DATA2) self.assertIn('daily', m.seasonalities) self.assertEqual(m.seasonalities['daily'], (1, 4)) # Should be disabled due to too short history N = 430 train = DATA2.head(N) m = Prophet() m.fit(train) self.assertNotIn('daily', m.seasonalities) m = Prophet(daily_seasonality=True) m.fit(train) self.assertIn('daily', m.seasonalities) m = Prophet(daily_seasonality=7) m.fit(DATA2) self.assertEqual(m.seasonalities['daily'], (1, 7)) m = Prophet() m.fit(DATA) self.assertNotIn('daily', m.seasonalities) def test_subdaily_holidays(self): holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2017-01-02']), 'holiday': ['new_years'], }) m = Prophet(holidays=holidays) m.fit(DATA2) fcst = m.predict() self.assertEqual(sum(fcst['new_years'] == 0), 575) def test_custom_seasonality(self): m = Prophet() m.add_seasonality(name='monthly', period=30, fourier_order=5) self.assertEqual(m.seasonalities['monthly'], (30, 5))