| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- library(prophet)
- context("Prophet tests")
- DATA <- read.csv('data.csv')
- DATA$ds <- as.Date(DATA$ds)
- N <- nrow(DATA)
- train <- DATA[1:floor(N / 2), ]
- future <- DATA[(ceiling(N/2) + 1):N, ]
- test_that("load_models", {
- expect_error(prophet:::get_prophet_stan_model('linear'), NA)
- expect_error(prophet:::get_prophet_stan_model('logistic'), NA)
- })
- test_that("fit_predict", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- m <- prophet(train)
- expect_error(predict(m, future), NA)
- })
- test_that("fit_predict_no_seasons", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- m <- prophet(train, weekly.seasonality = FALSE, yearly.seasonality = FALSE)
- expect_error(predict(m, future), NA)
- })
- test_that("fit_predict_no_changepoints", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- m <- prophet(train, n.changepoints = 0)
- expect_error(predict(m, future), NA)
- })
- test_that("setup_dataframe", {
- history <- train
- m <- prophet(history, fit = FALSE)
-
- out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
- history <- out$df
- expect_true('t' %in% colnames(history))
- expect_equal(min(history$t), 0)
- expect_equal(max(history$t), 1)
- expect_true('y_scaled' %in% colnames(history))
- expect_equal(max(history$y_scaled), 1)
- })
- test_that("get_changepoints", {
- history <- train
- m <- prophet(history, fit = FALSE)
- out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
- history <- out$df
- m <- out$m
- m$history <- history
- m <- prophet:::set_changepoints(m)
- cp <- prophet:::get_changepoint_indexes(m)
- expect_equal(length(cp), m$n.changepoints)
- expect_true(min(cp) > 0)
- expect_true(max(cp) < N)
- mat <- prophet:::get_changepoint_matrix(m)
- expect_equal(nrow(mat), floor(N / 2))
- expect_equal(ncol(mat), m$n.changepoints)
- })
- test_that("get_zero_changepoints", {
- history <- train
- m <- prophet(history, n.changepoints = 0, fit = FALSE)
-
- out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
- m <- out$m
- history <- out$df
- m$history <- history
- m <- prophet:::set_changepoints(m)
- cp <- prophet:::get_changepoint_indexes(m)
- expect_equal(length(cp), 1)
- expect_equal(cp[1], 1)
- mat <- prophet:::get_changepoint_matrix(m)
- expect_equal(nrow(mat), floor(N / 2))
- expect_equal(ncol(mat), 1)
- })
- test_that("fourier_series_weekly", {
- mat <- prophet:::fourier_series(DATA$ds, 7, 3)
- true.values <- c(0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837,
- -0.9009689)
- expect_equal(true.values, mat[1, ], tolerance = 1e-6)
- })
- test_that("fourier_series_yearly", {
- mat <- prophet:::fourier_series(DATA$ds, 365.25, 3)
- true.values <- c(0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249,
- 0.6874572)
- expect_equal(true.values, mat[1, ], tolerance = 1e-6)
- })
- test_that("growth_init", {
- history <- DATA
- history$cap <- max(history$y)
- m <- prophet(history, growth = 'logistic', fit = FALSE)
- out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
- m <- out$m
- history <- out$df
- params <- prophet:::linear_growth_init(history)
- expect_equal(params[1], 0.3055671, tolerance = 1e-6)
- expect_equal(params[2], 0.5307511, tolerance = 1e-6)
- params <- prophet:::logistic_growth_init(history)
-
- expect_equal(params[1], 1.507925, tolerance = 1e-6)
- expect_equal(params[2], -0.08167497, tolerance = 1e-6)
- })
- test_that("piecewise_linear", {
- t <- seq(0, 10)
- m <- 0
- k <- 1.0
- deltas <- c(0.5)
- changepoint.ts <- c(5)
- y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts)
- y.true <- c(0, 1, 2, 3, 4, 5, 6.5, 8, 9.5, 11, 12.5)
- expect_equal(y, y.true)
- t <- t[8:length(t)]
- y.true <- y.true[8:length(y.true)]
- y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts)
- expect_equal(y, y.true)
- })
- test_that("piecewise_logistic", {
- t <- seq(0, 10)
- cap <- rep(10, 11)
- m <- 0
- k <- 1.0
- deltas <- c(0.5)
- changepoint.ts <- c(5)
- y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts)
- y.true <- c(5.000000, 7.310586, 8.807971, 9.525741, 9.820138, 9.933071,
- 9.984988, 9.996646, 9.999252, 9.999833, 9.999963)
- expect_equal(y, y.true, tolerance = 1e-6)
-
- t <- t[8:length(t)]
- y.true <- y.true[8:length(y.true)]
- cap <- cap[8:length(cap)]
- y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts)
- expect_equal(y, y.true, tolerance = 1e-6)
- })
- test_that("holidays", {
- holidays = data.frame(ds = zoo::as.Date(c('2016-12-25')),
- holiday = c('xmas'),
- lower_window = c(-1),
- upper_window = c(0))
- df <- data.frame(
- ds = seq(zoo::as.Date('2016-12-20'), zoo::as.Date('2016-12-31'), by='d'))
- m <- prophet(train, holidays = holidays, fit = FALSE)
- feats <- prophet:::make_holiday_features(m, df$ds)
- expect_equal(nrow(feats), nrow(df))
- expect_equal(ncol(feats), 2)
- expect_equal(sum(colSums(feats) - c(1, 1)), 0)
- holidays = data.frame(ds = zoo::as.Date(c('2016-12-25')),
- holiday = c('xmas'),
- lower_window = c(-1),
- upper_window = c(10))
- m <- prophet(train, holidays = holidays, fit = FALSE)
- feats <- prophet:::make_holiday_features(m, df$ds)
- expect_equal(nrow(feats), nrow(df))
- expect_equal(ncol(feats), 12)
- })
- test_that("fit_with_holidays", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- holidays <- data.frame(ds = zoo::as.Date(c('2012-06-06', '2013-06-06')),
- holiday = c('seans-bday', 'seans-bday'),
- lower_window = c(0, 0),
- upper_window = c(1, 1))
- m <- prophet(DATA, holidays = holidays, uncertainty.samples = 0)
- expect_error(predict(m), NA)
- })
|