prophet.Rd 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. % Generated by roxygen2: do not edit by hand
  2. % Please edit documentation in R/prophet.R
  3. \name{prophet}
  4. \alias{prophet}
  5. \title{Prophet forecaster.}
  6. \usage{
  7. prophet(df = NULL, growth = "linear", changepoints = NULL,
  8. n.changepoints = 25, yearly.seasonality = "auto",
  9. weekly.seasonality = "auto", daily.seasonality = "auto",
  10. holidays = NULL, seasonality.prior.scale = 10,
  11. holidays.prior.scale = 10, changepoint.prior.scale = 0.05,
  12. mcmc.samples = 0, interval.width = 0.8, uncertainty.samples = 1000,
  13. fit = TRUE, ...)
  14. }
  15. \arguments{
  16. \item{df}{(optional) Dataframe containing the history. Must have columns ds
  17. (date type) and y, the time series. If growth is logistic, then df must
  18. also have a column cap that specifies the capacity at each ds. If not
  19. provided, then the model object will be instantiated but not fit; use
  20. fit.prophet(m, df) to fit the model.}
  21. \item{growth}{String 'linear' or 'logistic' to specify a linear or logistic
  22. trend.}
  23. \item{changepoints}{Vector of dates at which to include potential
  24. changepoints. If not specified, potential changepoints are selected
  25. automatically.}
  26. \item{n.changepoints}{Number of potential changepoints to include. Not used
  27. if input `changepoints` is supplied. If `changepoints` is not supplied,
  28. then n.changepoints potential changepoints are selected uniformly from the
  29. first 80 percent of df$ds.}
  30. \item{yearly.seasonality}{Fit yearly seasonality. Can be 'auto', TRUE,
  31. FALSE, or a number of Fourier terms to generate.}
  32. \item{weekly.seasonality}{Fit weekly seasonality. Can be 'auto', TRUE,
  33. FALSE, or a number of Fourier terms to generate.}
  34. \item{daily.seasonality}{Fit daily seasonality. Can be 'auto', TRUE,
  35. FALSE, or a number of Fourier terms to generate.}
  36. \item{holidays}{data frame with columns holiday (character) and ds (date
  37. type)and optionally columns lower_window and upper_window which specify a
  38. range of days around the date to be included as holidays. lower_window=-2
  39. will include 2 days prior to the date as holidays.}
  40. \item{seasonality.prior.scale}{Parameter modulating the strength of the
  41. seasonality model. Larger values allow the model to fit larger seasonal
  42. fluctuations, smaller values dampen the seasonality.}
  43. \item{holidays.prior.scale}{Parameter modulating the strength of the holiday
  44. components model.}
  45. \item{changepoint.prior.scale}{Parameter modulating the flexibility of the
  46. automatic changepoint selection. Large values will allow many changepoints,
  47. small values will allow few changepoints.}
  48. \item{mcmc.samples}{Integer, if greater than 0, will do full Bayesian
  49. inference with the specified number of MCMC samples. If 0, will do MAP
  50. estimation.}
  51. \item{interval.width}{Numeric, width of the uncertainty intervals provided
  52. for the forecast. If mcmc.samples=0, this will be only the uncertainty
  53. in the trend using the MAP estimate of the extrapolated generative model.
  54. If mcmc.samples>0, this will be integrated over all model parameters,
  55. which will include uncertainty in seasonality.}
  56. \item{uncertainty.samples}{Number of simulated draws used to estimate
  57. uncertainty intervals.}
  58. \item{fit}{Boolean, if FALSE the model is initialized but not fit.}
  59. \item{...}{Additional arguments, passed to \code{\link{fit.prophet}}}
  60. }
  61. \value{
  62. A prophet model.
  63. }
  64. \description{
  65. Prophet forecaster.
  66. }
  67. \examples{
  68. \dontrun{
  69. history <- data.frame(ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01'), by = 'd'),
  70. y = sin(1:366/200) + rnorm(366)/10)
  71. m <- prophet(history)
  72. }
  73. }