test_prophet.R 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. library(prophet)
  2. context("Prophet tests")
  3. DATA <- read.csv('data.csv')
  4. N <- nrow(DATA)
  5. train <- DATA[1:floor(N / 2), ]
  6. future <- DATA[(ceiling(N/2) + 1):N, ]
  7. DATA2 <- read.csv('data2.csv')
  8. DATA$ds <- prophet:::set_date(DATA$ds)
  9. DATA2$ds <- prophet:::set_date(DATA2$ds)
  10. test_that("fit_predict", {
  11. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  12. m <- prophet(train)
  13. expect_error(predict(m, future), NA)
  14. })
  15. test_that("fit_predict_no_seasons", {
  16. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  17. m <- prophet(train, weekly.seasonality = FALSE, yearly.seasonality = FALSE)
  18. expect_error(predict(m, future), NA)
  19. })
  20. test_that("fit_predict_no_changepoints", {
  21. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  22. m <- prophet(train, n.changepoints = 0)
  23. expect_error(predict(m, future), NA)
  24. })
  25. test_that("fit_predict_changepoint_not_in_history", {
  26. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  27. train_t <- dplyr::mutate(DATA, ds=prophet:::set_date(ds))
  28. train_t <- dplyr::filter(train_t,
  29. (ds < prophet:::set_date('2013-01-01')) |
  30. (ds > prophet:::set_date('2014-01-01')))
  31. future <- data.frame(ds=DATA$ds)
  32. m <- prophet(train_t, changepoints=c('2013-06-06'))
  33. expect_error(predict(m, future), NA)
  34. })
  35. test_that("fit_predict_duplicates", {
  36. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  37. train2 <- train
  38. train2$y <- train2$y + 10
  39. train_t <- rbind(train, train2)
  40. m <- prophet(train_t)
  41. expect_error(predict(m, future), NA)
  42. })
  43. test_that("fit_predict_constant_history", {
  44. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  45. train2 <- train
  46. train2$y <- 20
  47. m <- prophet(train2)
  48. fcst <- predict(m, future)
  49. expect_equal(tail(fcst$yhat, 1), 20)
  50. train2$y <- 0
  51. m <- prophet(train2)
  52. fcst <- predict(m, future)
  53. expect_equal(tail(fcst$yhat, 1), 0)
  54. })
  55. test_that("setup_dataframe", {
  56. history <- train
  57. m <- prophet(history, fit = FALSE)
  58. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  59. history <- out$df
  60. expect_true('t' %in% colnames(history))
  61. expect_equal(min(history$t), 0)
  62. expect_equal(max(history$t), 1)
  63. expect_true('y_scaled' %in% colnames(history))
  64. expect_equal(max(history$y_scaled), 1)
  65. })
  66. test_that("logistic_floor", {
  67. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  68. m <- prophet(growth = 'logistic')
  69. history <- train
  70. history$floor <- 10.
  71. history$cap <- 80.
  72. future1 <- future
  73. future1$cap <- 80.
  74. future1$floor <- 10.
  75. m <- fit.prophet(m, history, algorithm = 'Newton')
  76. expect_true(m$logistic.floor)
  77. expect_true('floor' %in% colnames(m$history))
  78. expect_equal(m$history$y_scaled[1], 1., tolerance = 1e-6)
  79. fcst1 <- predict(m, future1)
  80. m2 <- prophet(growth = 'logistic')
  81. history2 <- history
  82. history2$y <- history2$y + 10.
  83. history2$floor <- history2$floor + 10.
  84. history2$cap <- history2$cap + 10.
  85. future1$cap <- future1$cap + 10.
  86. future1$floor <- future1$floor + 10.
  87. m2 <- fit.prophet(m2, history2, algorithm = 'Newton')
  88. expect_equal(m2$history$y_scaled[1], 1., tolerance = 1e-6)
  89. fcst2 <- predict(m, future1)
  90. fcst2$yhat <- fcst2$yhat - 10.
  91. # Check for approximate shift invariance
  92. expect_true(all(abs(fcst1$yhat - fcst2$yhat) < 1))
  93. })
  94. test_that("get_changepoints", {
  95. history <- train
  96. m <- prophet(history, fit = FALSE)
  97. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  98. history <- out$df
  99. m <- out$m
  100. m$history <- history
  101. m <- prophet:::set_changepoints(m)
  102. cp <- m$changepoints.t
  103. expect_equal(length(cp), m$n.changepoints)
  104. expect_true(min(cp) > 0)
  105. expect_true(max(cp) < N)
  106. mat <- prophet:::get_changepoint_matrix(m)
  107. expect_equal(nrow(mat), floor(N / 2))
  108. expect_equal(ncol(mat), m$n.changepoints)
  109. })
  110. test_that("get_zero_changepoints", {
  111. history <- train
  112. m <- prophet(history, n.changepoints = 0, fit = FALSE)
  113. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  114. m <- out$m
  115. history <- out$df
  116. m$history <- history
  117. m <- prophet:::set_changepoints(m)
  118. cp <- m$changepoints.t
  119. expect_equal(length(cp), 1)
  120. expect_equal(cp[1], 0)
  121. mat <- prophet:::get_changepoint_matrix(m)
  122. expect_equal(nrow(mat), floor(N / 2))
  123. expect_equal(ncol(mat), 1)
  124. })
  125. test_that("override_n_changepoints", {
  126. history <- train[1:20,]
  127. m <- prophet(history, fit = FALSE)
  128. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  129. m <- out$m
  130. history <- out$df
  131. m$history <- history
  132. m <- prophet:::set_changepoints(m)
  133. expect_equal(m$n.changepoints, 15)
  134. cp <- m$changepoints.t
  135. expect_equal(length(cp), 15)
  136. })
  137. test_that("fourier_series_weekly", {
  138. true.values <- c(0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837,
  139. -0.9009689)
  140. mat <- prophet:::fourier_series(DATA$ds, 7, 3)
  141. expect_equal(true.values, mat[1, ], tolerance = 1e-6)
  142. })
  143. test_that("fourier_series_yearly", {
  144. true.values <- c(0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249,
  145. 0.6874572)
  146. mat <- prophet:::fourier_series(DATA$ds, 365.25, 3)
  147. expect_equal(true.values, mat[1, ], tolerance = 1e-6)
  148. })
  149. test_that("growth_init", {
  150. history <- DATA[1:468, ]
  151. history$cap <- max(history$y)
  152. m <- prophet(history, growth = 'logistic', fit = FALSE)
  153. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  154. m <- out$m
  155. history <- out$df
  156. params <- prophet:::linear_growth_init(history)
  157. expect_equal(params[1], 0.3055671, tolerance = 1e-6)
  158. expect_equal(params[2], 0.5307511, tolerance = 1e-6)
  159. params <- prophet:::logistic_growth_init(history)
  160. expect_equal(params[1], 1.507925, tolerance = 1e-6)
  161. expect_equal(params[2], -0.08167497, tolerance = 1e-6)
  162. })
  163. test_that("piecewise_linear", {
  164. t <- seq(0, 10)
  165. m <- 0
  166. k <- 1.0
  167. deltas <- c(0.5)
  168. changepoint.ts <- c(5)
  169. y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts)
  170. y.true <- c(0, 1, 2, 3, 4, 5, 6.5, 8, 9.5, 11, 12.5)
  171. expect_equal(y, y.true)
  172. t <- t[8:length(t)]
  173. y.true <- y.true[8:length(y.true)]
  174. y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts)
  175. expect_equal(y, y.true)
  176. })
  177. test_that("piecewise_logistic", {
  178. t <- seq(0, 10)
  179. cap <- rep(10, 11)
  180. m <- 0
  181. k <- 1.0
  182. deltas <- c(0.5)
  183. changepoint.ts <- c(5)
  184. y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts)
  185. y.true <- c(5.000000, 7.310586, 8.807971, 9.525741, 9.820138, 9.933071,
  186. 9.984988, 9.996646, 9.999252, 9.999833, 9.999963)
  187. expect_equal(y, y.true, tolerance = 1e-6)
  188. t <- t[8:length(t)]
  189. y.true <- y.true[8:length(y.true)]
  190. cap <- cap[8:length(cap)]
  191. y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts)
  192. expect_equal(y, y.true, tolerance = 1e-6)
  193. })
  194. test_that("holidays", {
  195. holidays = data.frame(ds = c('2016-12-25'),
  196. holiday = c('xmas'),
  197. lower_window = c(-1),
  198. upper_window = c(0))
  199. df <- data.frame(
  200. ds = seq(prophet:::set_date('2016-12-20'),
  201. prophet:::set_date('2016-12-31'), by='d'))
  202. m <- prophet(train, holidays = holidays, fit = FALSE)
  203. out <- prophet:::make_holiday_features(m, df$ds)
  204. feats <- out$holiday.features
  205. priors <- out$prior.scales
  206. expect_equal(nrow(feats), nrow(df))
  207. expect_equal(ncol(feats), 2)
  208. expect_equal(sum(colSums(feats) - c(1, 1)), 0)
  209. expect_true(all(priors == c(10., 10.)))
  210. holidays = data.frame(ds = c('2016-12-25'),
  211. holiday = c('xmas'),
  212. lower_window = c(-1),
  213. upper_window = c(10))
  214. m <- prophet(train, holidays = holidays, fit = FALSE)
  215. out <- prophet:::make_holiday_features(m, df$ds)
  216. feats <- out$holiday.features
  217. priors <- out$prior.scales
  218. expect_equal(nrow(feats), nrow(df))
  219. expect_equal(ncol(feats), 12)
  220. expect_true(all(priors == rep(10, 12)))
  221. # Check prior specifications
  222. holidays <- data.frame(
  223. ds = prophet:::set_date(c('2016-12-25', '2017-12-25')),
  224. holiday = c('xmas', 'xmas'),
  225. lower_window = c(-1, -1),
  226. upper_window = c(0, 0),
  227. prior_scale = c(5., 5.)
  228. )
  229. m <- prophet(holidays = holidays, fit = FALSE)
  230. out <- prophet:::make_holiday_features(m, df$ds)
  231. priors <- out$prior.scales
  232. expect_true(all(priors == c(5., 5.)))
  233. # 2 different priors
  234. holidays2 <- data.frame(
  235. ds = prophet:::set_date(c('2012-06-06', '2013-06-06')),
  236. holiday = c('seans-bday', 'seans-bday'),
  237. lower_window = c(0, 0),
  238. upper_window = c(1, 1),
  239. prior_scale = c(8, 8)
  240. )
  241. holidays2 <- rbind(holidays, holidays2)
  242. m <- prophet(holidays = holidays2, fit = FALSE)
  243. out <- prophet:::make_holiday_features(m, df$ds)
  244. priors <- out$prior.scales
  245. expect_true(all(priors == c(8, 8, 5, 5)))
  246. holidays2 <- data.frame(
  247. ds = prophet:::set_date(c('2012-06-06', '2013-06-06')),
  248. holiday = c('seans-bday', 'seans-bday'),
  249. lower_window = c(0, 0),
  250. upper_window = c(1, 1)
  251. )
  252. holidays2 <- dplyr::bind_rows(holidays, holidays2)
  253. m <- prophet(holidays = holidays2, fit = FALSE, holidays.prior.scale = 4)
  254. out <- prophet:::make_holiday_features(m, df$ds)
  255. priors <- out$prior.scales
  256. expect_true(all(priors == c(4, 4, 5, 5)))
  257. # Check incompatible priors
  258. holidays <- data.frame(
  259. ds = prophet:::set_date(c('2016-12-25', '2016-12-27')),
  260. holiday = c('xmasish', 'xmasish'),
  261. lower_window = c(-1, -1),
  262. upper_window = c(0, 0),
  263. prior_scale = c(5., 6.)
  264. )
  265. m <- prophet(holidays = holidays, fit = FALSE)
  266. expect_error(prophet:::make_holiday_features(m, df$ds))
  267. })
  268. test_that("fit_with_holidays", {
  269. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  270. holidays <- data.frame(ds = c('2012-06-06', '2013-06-06'),
  271. holiday = c('seans-bday', 'seans-bday'),
  272. lower_window = c(0, 0),
  273. upper_window = c(1, 1))
  274. m <- prophet(DATA, holidays = holidays, uncertainty.samples = 0)
  275. expect_error(predict(m), NA)
  276. })
  277. test_that("make_future_dataframe", {
  278. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  279. train.t <- DATA[1:234, ]
  280. m <- prophet(train.t)
  281. future <- make_future_dataframe(m, periods = 3, freq = 'day',
  282. include_history = FALSE)
  283. correct <- prophet:::set_date(c('2013-04-26', '2013-04-27', '2013-04-28'))
  284. expect_equal(future$ds, correct)
  285. future <- make_future_dataframe(m, periods = 3, freq = 'month',
  286. include_history = FALSE)
  287. correct <- prophet:::set_date(c('2013-05-25', '2013-06-25', '2013-07-25'))
  288. expect_equal(future$ds, correct)
  289. })
  290. test_that("auto_weekly_seasonality", {
  291. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  292. # Should be enabled
  293. N.w <- 15
  294. train.w <- DATA[1:N.w, ]
  295. m <- prophet(train.w, fit = FALSE)
  296. expect_equal(m$weekly.seasonality, 'auto')
  297. m <- fit.prophet(m, train.w)
  298. expect_true('weekly' %in% names(m$seasonalities))
  299. true <- list(period = 7, fourier.order = 3, prior.scale = 10)
  300. for (name in names(true)) {
  301. expect_equal(m$seasonalities$weekly[[name]], true[[name]])
  302. }
  303. # Should be disabled due to too short history
  304. N.w <- 9
  305. train.w <- DATA[1:N.w, ]
  306. m <- prophet(train.w)
  307. expect_false('weekly' %in% names(m$seasonalities))
  308. m <- prophet(train.w, weekly.seasonality = TRUE)
  309. expect_true('weekly' %in% names(m$seasonalities))
  310. # Should be False due to weekly spacing
  311. train.w <- DATA[seq(1, nrow(DATA), 7), ]
  312. m <- prophet(train.w)
  313. expect_false('weekly' %in% names(m$seasonalities))
  314. m <- prophet(DATA, weekly.seasonality = 2, seasonality.prior.scale = 3)
  315. true <- list(period = 7, fourier.order = 2, prior.scale = 3)
  316. for (name in names(true)) {
  317. expect_equal(m$seasonalities$weekly[[name]], true[[name]])
  318. }
  319. })
  320. test_that("auto_yearly_seasonality", {
  321. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  322. # Should be enabled
  323. m <- prophet(DATA, fit = FALSE)
  324. expect_equal(m$yearly.seasonality, 'auto')
  325. m <- fit.prophet(m, DATA)
  326. expect_true('yearly' %in% names(m$seasonalities))
  327. true <- list(period = 365.25, fourier.order = 10, prior.scale = 10)
  328. for (name in names(true)) {
  329. expect_equal(m$seasonalities$yearly[[name]], true[[name]])
  330. }
  331. # Should be disabled due to too short history
  332. N.w <- 240
  333. train.y <- DATA[1:N.w, ]
  334. m <- prophet(train.y)
  335. expect_false('yearly' %in% names(m$seasonalities))
  336. m <- prophet(train.y, yearly.seasonality = TRUE)
  337. expect_true('yearly' %in% names(m$seasonalities))
  338. m <- prophet(DATA, yearly.seasonality = 7, seasonality.prior.scale = 3)
  339. true <- list(period = 365.25, fourier.order = 7, prior.scale = 3)
  340. for (name in names(true)) {
  341. expect_equal(m$seasonalities$yearly[[name]], true[[name]])
  342. }
  343. })
  344. test_that("auto_daily_seasonality", {
  345. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  346. # Should be enabled
  347. m <- prophet(DATA2, fit = FALSE)
  348. expect_equal(m$daily.seasonality, 'auto')
  349. m <- fit.prophet(m, DATA2)
  350. expect_true('daily' %in% names(m$seasonalities))
  351. true <- list(period = 1, fourier.order = 4, prior.scale = 10)
  352. for (name in names(true)) {
  353. expect_equal(m$seasonalities$daily[[name]], true[[name]])
  354. }
  355. # Should be disabled due to too short history
  356. N.d <- 430
  357. train.y <- DATA2[1:N.d, ]
  358. m <- prophet(train.y)
  359. expect_false('daily' %in% names(m$seasonalities))
  360. m <- prophet(train.y, daily.seasonality = TRUE)
  361. expect_true('daily' %in% names(m$seasonalities))
  362. m <- prophet(DATA2, daily.seasonality = 7, seasonality.prior.scale = 3)
  363. true <- list(period = 1, fourier.order = 7, prior.scale = 3)
  364. for (name in names(true)) {
  365. expect_equal(m$seasonalities$daily[[name]], true[[name]])
  366. }
  367. m <- prophet(DATA)
  368. expect_false('daily' %in% names(m$seasonalities))
  369. })
  370. test_that("test_subdaily_holidays", {
  371. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  372. holidays <- data.frame(ds = c('2017-01-02'),
  373. holiday = c('special_day'))
  374. m <- prophet(DATA2, holidays=holidays)
  375. fcst <- predict(m)
  376. expect_equal(sum(fcst$special_day == 0), 575)
  377. })
  378. test_that("custom_seasonality", {
  379. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  380. holidays <- data.frame(ds = c('2017-01-02'),
  381. holiday = c('special_day'),
  382. prior_scale = c(4))
  383. m <- prophet(holidays=holidays)
  384. m <- add_seasonality(m, name='monthly', period=30, fourier.order=5)
  385. true <- list(period = 30, fourier.order = 5, prior.scale = 10)
  386. for (name in names(true)) {
  387. expect_equal(m$seasonalities$monthly[[name]], true[[name]])
  388. }
  389. expect_error(
  390. add_seasonality(m, name='special_day', period=30, fourier_order=5)
  391. )
  392. expect_error(
  393. add_seasonality(m, name='trend', period=30, fourier_order=5)
  394. )
  395. m <- add_seasonality(m, name='weekly', period=30, fourier.order=5)
  396. # Test priors
  397. m <- prophet(holidays = holidays, yearly.seasonality = FALSE)
  398. m <- add_seasonality(
  399. m, name='monthly', period=30, fourier.order=5, prior.scale = 2)
  400. m <- fit.prophet(m, DATA)
  401. prior.scales <- prophet:::make_all_seasonality_features(
  402. m, m$history)$prior.scales
  403. expect_true(all(prior.scales == c(rep(2, 10), rep(10, 6), 4)))
  404. })
  405. test_that("added_regressors", {
  406. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  407. m <- prophet()
  408. m <- add_regressor(m, 'binary_feature', prior.scale=0.2)
  409. m <- add_regressor(m, 'numeric_feature', prior.scale=0.5)
  410. m <- add_regressor(m, 'binary_feature2', standardize=TRUE)
  411. df <- DATA
  412. df$binary_feature <- c(rep(0, 255), rep(1, 255))
  413. df$numeric_feature <- 0:509
  414. # Require all regressors in df
  415. expect_error(
  416. fit.prophet(m, df)
  417. )
  418. df$binary_feature2 <- c(rep(1, 100), rep(0, 410))
  419. m <- fit.prophet(m, df)
  420. # Check that standardizations are correctly set
  421. true <- list(prior.scale = 0.2, mu = 0, std = 1, standardize = 'auto')
  422. for (name in names(true)) {
  423. expect_equal(true[[name]], m$extra_regressors$binary_feature[[name]])
  424. }
  425. true <- list(prior.scale = 0.5, mu = 254.5, std = 147.368585)
  426. for (name in names(true)) {
  427. expect_equal(true[[name]], m$extra_regressors$numeric_feature[[name]],
  428. tolerance = 1e-5)
  429. }
  430. true <- list(prior.scale = 10., mu = 0.1960784, std = 0.3974183)
  431. for (name in names(true)) {
  432. expect_equal(true[[name]], m$extra_regressors$binary_feature2[[name]],
  433. tolerance = 1e-5)
  434. }
  435. # Check that standardization is done correctly
  436. df2 <- prophet:::setup_dataframe(m, df)$df
  437. expect_equal(df2$binary_feature[1], 0)
  438. expect_equal(df2$numeric_feature[1], -1.726962, tolerance = 1e-4)
  439. expect_equal(df2$binary_feature2[1], 2.022859, tolerance = 1e-4)
  440. # Check that feature matrix and prior scales are correctly constructed
  441. out <- prophet:::make_all_seasonality_features(m, df2)
  442. seasonal.features <- out$seasonal.features
  443. prior.scales <- out$prior.scales
  444. expect_true('binary_feature' %in% colnames(seasonal.features))
  445. expect_true('numeric_feature' %in% colnames(seasonal.features))
  446. expect_true('binary_feature2' %in% colnames(seasonal.features))
  447. expect_equal(ncol(seasonal.features), 29)
  448. expect_true(all(sort(prior.scales[27:29]) == c(0.2, 0.5, 10.)))
  449. # Check that forecast components are reasonable
  450. future <- data.frame(
  451. ds = c('2014-06-01'), binary_feature = c(0), numeric_feature = c(10))
  452. expect_error(predict(m, future))
  453. future$binary_feature2 <- 0.
  454. fcst <- predict(m, future)
  455. expect_equal(ncol(fcst), 31)
  456. expect_equal(fcst$binary_feature[1], 0)
  457. expect_equal(fcst$extra_regressors[1],
  458. fcst$numeric_feature[1] + fcst$binary_feature2[1])
  459. expect_equal(fcst$seasonalities[1], fcst$yearly[1] + fcst$weekly[1])
  460. expect_equal(fcst$seasonal[1],
  461. fcst$seasonalities[1] + fcst$extra_regressors[1])
  462. expect_equal(fcst$yhat[1], fcst$trend[1] + fcst$seasonal[1])
  463. # Check fails if constant extra regressor
  464. df$constant_feature <- 5
  465. m <- prophet()
  466. m <- add_regressor(m, 'constant_feature')
  467. expect_error(fit.prophet(m, df))
  468. })
  469. test_that("copy", {
  470. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  471. df <- DATA
  472. df$cap <- 200.
  473. df$binary_feature <- c(rep(0, 255), rep(1, 255))
  474. inputs <- list(
  475. growth = c('linear', 'logistic'),
  476. yearly.seasonality = c(TRUE, FALSE),
  477. weekly.seasonality = c(TRUE, FALSE),
  478. daily.seasonality = c(TRUE, FALSE),
  479. holidays = c('null', 'insert_dataframe')
  480. )
  481. products <- expand.grid(inputs)
  482. for (i in 1:length(products)) {
  483. if (products$holidays[i] == 'insert_dataframe') {
  484. holidays <- data.frame(ds=c('2016-12-25'), holiday=c('x'))
  485. } else {
  486. holidays <- NULL
  487. }
  488. m1 <- prophet(
  489. growth = as.character(products$growth[i]),
  490. changepoints = NULL,
  491. n.changepoints = 3,
  492. yearly.seasonality = products$yearly.seasonality[i],
  493. weekly.seasonality = products$weekly.seasonality[i],
  494. daily.seasonality = products$daily.seasonality[i],
  495. holidays = holidays,
  496. seasonality.prior.scale = 1.1,
  497. holidays.prior.scale = 1.1,
  498. changepoints.prior.scale = 0.1,
  499. mcmc.samples = 100,
  500. interval.width = 0.9,
  501. uncertainty.samples = 200,
  502. fit = FALSE
  503. )
  504. out <- prophet:::setup_dataframe(m1, df, initialize_scales = TRUE)
  505. m1 <- out$m
  506. m1$history <- out$df
  507. m1 <- prophet:::set_auto_seasonalities(m1)
  508. m2 <- prophet:::prophet_copy(m1)
  509. # Values should be copied correctly
  510. args <- c('growth', 'changepoints', 'n.changepoints', 'holidays',
  511. 'seasonality.prior.scale', 'holidays.prior.scale',
  512. 'changepoints.prior.scale', 'mcmc.samples', 'interval.width',
  513. 'uncertainty.samples')
  514. for (arg in args) {
  515. expect_equal(m1[[arg]], m2[[arg]])
  516. }
  517. expect_equal(FALSE, m2$yearly.seasonality)
  518. expect_equal(FALSE, m2$weekly.seasonality)
  519. expect_equal(FALSE, m2$daily.seasonality)
  520. expect_equal(m1$yearly.seasonality, 'yearly' %in% names(m2$seasonalities))
  521. expect_equal(m1$weekly.seasonality, 'weekly' %in% names(m2$seasonalities))
  522. expect_equal(m1$daily.seasonality, 'daily' %in% names(m2$seasonalities))
  523. }
  524. # Check for cutoff and custom seasonality and extra regressors
  525. changepoints <- seq.Date(as.Date('2012-06-15'), as.Date('2012-09-15'), by='d')
  526. cutoff <- as.Date('2012-07-25')
  527. m1 <- prophet(changepoints = changepoints)
  528. m1 <- add_seasonality(m1, 'custom', 10, 5)
  529. m1 <- add_regressor(m1, 'binary_feature')
  530. m1 <- fit.prophet(m1, df)
  531. m2 <- prophet:::prophet_copy(m1, cutoff)
  532. changepoints <- changepoints[changepoints <= cutoff]
  533. expect_equal(prophet:::set_date(changepoints), m2$changepoints)
  534. expect_true('custom' %in% names(m2$seasonalities))
  535. expect_true('binary_feature' %in% names(m2$extra_regressors))
  536. })