123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752 |
- # Copyright (c) 2017-present, Facebook, Inc.
- # All rights reserved.
- #
- # This source code is licensed under the BSD-style license found in the
- # LICENSE file in the root directory of this source tree. An additional grant
- # of patent rights can be found in the PATENTS file in the same directory.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- from collections import defaultdict
- from datetime import timedelta
- import pickle
- from matplotlib import pyplot as plt
- from matplotlib.dates import DateFormatter, MonthLocator
- from matplotlib.ticker import MaxNLocator
- import numpy as np
- import pandas as pd
- # fb-block 1 start
- import pkg_resources
- # fb-block 1 end
- try:
- import pystan
- except ImportError:
- print('You cannot run prophet without pystan installed')
- raise
- # fb-block 2
- class Prophet(object):
- def __init__(
- self,
- growth='linear',
- changepoints=None,
- n_changepoints=25,
- yearly_seasonality=True,
- weekly_seasonality=True,
- holidays=None,
- seasonality_prior_scale=10.0,
- holidays_prior_scale=10.0,
- changepoint_prior_scale=0.05,
- mcmc_samples=0,
- interval_width=0.80,
- uncertainty_samples=1000,
- ):
- if growth not in ('linear', 'logistic'):
- raise ValueError("growth setting must be 'linear' or 'logistic'")
- self.growth = growth
- self.changepoints = pd.to_datetime(changepoints)
- if self.changepoints is not None:
- self.n_changepoints = len(self.changepoints)
- else:
- self.n_changepoints = n_changepoints
- self.yearly_seasonality = yearly_seasonality
- self.weekly_seasonality = weekly_seasonality
- if holidays is not None:
- if not (
- isinstance(holidays, pd.DataFrame)
- and 'ds' in holidays
- and 'holiday' in holidays
- ):
- raise ValueError("holidays must be a DataFrame with 'ds' and "
- "'holiday' columns.")
- holidays['ds'] = pd.to_datetime(holidays['ds'])
- self.holidays = holidays
- self.seasonality_prior_scale = float(seasonality_prior_scale)
- self.changepoint_prior_scale = float(changepoint_prior_scale)
- self.holidays_prior_scale = float(holidays_prior_scale)
- self.mcmc_samples = mcmc_samples
- self.interval_width = interval_width
- self.uncertainty_samples = uncertainty_samples
- # Set during fitting
- self.start = None
- self.end = None
- self.y_scale = None
- self.stan_fit = None
- self.params = {}
- self.history = None
- @classmethod
- def get_linear_model(cls):
- # fb-block 3
- # fb-block 4 start
- model_file = pkg_resources.resource_filename(
- 'fbprophet',
- 'stan_models/linear_growth.pkl'
- )
- # fb-block 4 end
- with open(model_file, 'rb') as f:
- return pickle.load(f)
- @classmethod
- def get_logistic_model(cls):
- # fb-block 5
- # fb-block 6 start
- model_file = pkg_resources.resource_filename(
- 'fbprophet',
- 'stan_models/logistic_growth.pkl'
- )
- # fb-block 6 end
- with open(model_file, 'rb') as f:
- return pickle.load(f)
- def setup_dataframe(self, df, initialize_scales=False):
- """Create auxillary columns 't', 't_ix', 'y_scaled', and 'cap_scaled'.
- These columns are used during both fitting and prediction.
- """
- if 'y' in df:
- df['y'] = pd.to_numeric(df['y'])
- df['ds'] = pd.to_datetime(df['ds'])
- df = df.sort_values('ds')
- if initialize_scales:
- self.y_scale = df['y'].max()
- self.start, self.end = df['ds'].min(), df['ds'].max()
- t_scale = self.end - self.start
- df['t'] = (df['ds'] - self.start) / t_scale
- if 'y' in df:
- df['y_scaled'] = df['y'] / self.y_scale
- if self.growth == 'logistic':
- assert 'cap' in df
- df['cap_scaled'] = df['cap'] / self.y_scale
- return df
- def set_changepoints(self):
- """Generate a list of changepoints.
- Either:
- 1) the changepoints were passed in explicitly
- A) they are empty
- B) not empty, needs validation
- 2) we are generating a grid of them
- 3) the user prefers no changepoints to be used
- """
- if self.changepoints is not None:
- if len(self.changepoints) == 0:
- pass
- else:
- too_low = min(self.changepoints) < self.history['ds'].min()
- too_high = max(self.changepoints) > self.history['ds'].max()
- if too_low or too_high:
- raise ValueError('Changepoints must fall within training data.')
- elif self.n_changepoints > 0:
- # Place potential changepoints evenly throuh first 80% of history
- max_ix = np.floor(self.history.shape[0] * 0.8)
- cp_indexes = (
- np.linspace(0, max_ix, self.n_changepoints + 1)
- .round()
- .astype(np.int)
- )
- self.changepoints = self.history.ix[cp_indexes]['ds'].tail(-1)
- else:
- # set empty changepoints
- self.changepoints = []
- def get_changepoint_indexes(self):
- if len(self.changepoints) == 0:
- return np.array([0]) # a dummy changepoint
- else:
- row_index = pd.DatetimeIndex(self.history['ds'])
- indexes = []
- for cp in self.changepoints:
- # In the future this may raise a KeyError, but for now we
- # should guarantee that all changepoint dates are included in
- # the historical data.
- indexes.append(row_index.get_loc(cp))
- return np.array(indexes).astype(np.int)
- def get_changepoint_times(self):
- cpi = self.get_changepoint_indexes()
- return np.array(self.history['t'].iloc[cpi])
- def get_changepoint_matrix(self):
- changepoint_indexes = self.get_changepoint_indexes()
- A = np.zeros((self.history.shape[0], len(changepoint_indexes)))
- for i, index in enumerate(changepoint_indexes):
- A[index:self.history.shape[0], i] = 1
- return A
- @staticmethod
- def fourier_series(dates, period, series_order):
- """Generate a Fourier expansion for a fixed frequency and order.
- Parameters
- ----------
- dates: a pd.Series containing timestamps
- period: an integer frequency (number of days)
- series_order: number of components to generate
- Returns
- -------
- a 2-dimensional np.array with one row per row in `dt`
- """
- # convert to days since epoch
- t = np.array(
- (dates - pd.datetime(1970, 1, 1))
- .apply(lambda x: x.days)
- .astype(np.float)
- )
- return np.column_stack([
- fun((2.0 * (i + 1) * np.pi * t / period))
- for i in range(series_order)
- for fun in (np.sin, np.cos)
- ])
- @classmethod
- def make_seasonality_features(cls, dates, period, series_order, prefix):
- features = cls.fourier_series(dates, period, series_order)
- columns = [
- '{}_{}'.format(prefix, i + 1)
- for i in range(features.shape[1])
- ]
- return pd.DataFrame(features, columns=columns)
- def make_holiday_features(self, dates):
- """Generate a DataFrame with each column corresponding to a holiday.
- """
- # A smaller prior scale will shrink holiday estimates more
- scale_ratio = self.holidays_prior_scale / self.seasonality_prior_scale
- # Holds columns of our future matrix.
- expanded_holidays = defaultdict(lambda: np.zeros(dates.shape[0]))
- # Makes an index so we can perform `get_loc` below.
- row_index = pd.DatetimeIndex(dates)
- for ix, row in self.holidays.iterrows():
- dt = row.ds.date()
- try:
- lw = int(row.get('lower_window', 0))
- uw = int(row.get('upper_window', 0))
- except ValueError:
- lw = 0
- uw = 0
- for offset in range(lw, uw + 1):
- occurrence = dt + timedelta(days=offset)
- try:
- loc = row_index.get_loc(occurrence)
- except KeyError:
- loc = None
- key = '{}_{}{}'.format(
- row.holiday,
- '+' if offset >= 0 else '-',
- abs(offset)
- )
- if loc is not None:
- expanded_holidays[key][loc] = scale_ratio
- else:
- # Access key to generate value
- expanded_holidays[key]
- # This relies pretty importantly on pandas keeping the columns in order.
- return pd.DataFrame(expanded_holidays)
- def make_all_seasonality_features(self, df):
- seasonal_features = [
- # Add a column of zeros in case no seasonality is used.
- pd.DataFrame({'zeros': np.zeros(df.shape[0])})
- ]
- # Seasonality features
- if self.yearly_seasonality:
- seasonal_features.append(self.make_seasonality_features(
- df['ds'],
- 365.25,
- 10,
- 'yearly',
- ))
- if self.weekly_seasonality:
- seasonal_features.append(self.make_seasonality_features(
- df['ds'],
- 7,
- 3,
- 'weekly',
- ))
- if self.holidays is not None:
- seasonal_features.append(self.make_holiday_features(df['ds']))
- return pd.concat(seasonal_features, axis=1)
- @staticmethod
- def linear_growth_init(df):
- i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
- T = df['t'].ix[i1] - df['t'].ix[i0]
- k = (df['y_scaled'].ix[i1] - df['y_scaled'].ix[i0]) / T
- m = df['y_scaled'].ix[i0] - k * df['t'].ix[i0]
- return (k, m)
- @staticmethod
- def logistic_growth_init(df):
- i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
- T = df['t'].ix[i1] - df['t'].ix[i0]
- # Force valid values, in case y > cap.
- r0 = max(1.01, df['cap_scaled'].ix[i0] / df['y_scaled'].ix[i0])
- r1 = max(1.01, df['cap_scaled'].ix[i1] / df['y_scaled'].ix[i1])
- if abs(r0 - r1) <= 0.01:
- r0 = 1.05 * r0
- L0 = np.log(r0 - 1)
- L1 = np.log(r1 - 1)
- # Initialize the offset
- m = L0 * T / (L0 - L1)
- # And the rate
- k = L0 / m
- return (k, m)
- # fb-block 7
- def fit(self, df, **kwargs):
- """Fit the Prophet model to data.
- Parameters
- ----------
- df: pd.DataFrame containing history. Must have columns 'ds', 'y', and
- if logistic growth, 'cap'.
- kwargs: Additional arguments passed to Stan's sampling or optimizing
- function, as appropriate.
- Returns
- -------
- The fitted Prophet object.
- """
- history = df[df['y'].notnull()].copy()
- history.reset_index(inplace=True, drop=True)
- history = self.setup_dataframe(history, initialize_scales=True)
- self.history = history
- seasonal_features = self.make_all_seasonality_features(history)
- self.set_changepoints()
- A = self.get_changepoint_matrix()
- changepoint_indexes = self.get_changepoint_indexes()
- dat = {
- 'T': history.shape[0],
- 'K': seasonal_features.shape[1],
- 'S': len(changepoint_indexes),
- 'y': history['y_scaled'],
- 't': history['t'],
- 'A': A,
- # Need to add one because Stan is 1-indexed.
- 's_indx': changepoint_indexes + 1,
- 'X': seasonal_features,
- 'sigma': self.seasonality_prior_scale,
- 'tau': self.changepoint_prior_scale,
- }
- if self.growth == 'linear':
- kinit = self.linear_growth_init(history)
- model = self.get_linear_model()
- else:
- dat['cap'] = history['cap_scaled']
- kinit = self.logistic_growth_init(history)
- model = self.get_logistic_model()
- def stan_init():
- return {
- 'k': kinit[0],
- 'm': kinit[1],
- 'delta': np.zeros(len(changepoint_indexes)),
- 'beta': np.zeros(seasonal_features.shape[1]),
- 'sigma_obs': 1,
- }
- if self.mcmc_samples > 0:
- stan_fit = model.sampling(
- dat,
- init=stan_init,
- iter=self.mcmc_samples,
- **kwargs
- )
- for par in stan_fit.model_pars:
- self.params[par] = stan_fit[par]
- else:
- params = model.optimizing(dat, init=stan_init, iter=1e4, **kwargs)
- for par in params:
- self.params[par] = params[par].reshape((1, -1))
- # If no changepoints were requested, replace delta with 0s
- if len(self.changepoints) == 0:
- # Fold delta into the base rate k
- params['k'] = params['k'] + params['delta']
- params['delta'] = np.zeros(params['delta'].shape)
- return self
- # fb-block 8
- def predict(self, df=None):
- """Predict historical and future values for y.
- Note: you must only pass in future dates here.
- Historical dates are prepended before predictions are made.
- `df` can be None, in which case we predict only on history.
- """
- if df is None:
- df = self.history
- else:
- df = self.setup_dataframe(df)
- df['trend'] = self.predict_trend(df)
- seasonal_components = self.predict_seasonal_components(df)
- intervals = self.predict_uncertainty(df)
- df2 = pd.concat((df, intervals, seasonal_components), axis=1)
- df2['yhat'] = df2['trend'] + df2['seasonal']
- return df2
- @staticmethod
- def piecewise_linear(t, deltas, k, m, changepoint_ts):
- # Intercept changes
- gammas = -changepoint_ts * deltas
- # Get cumulative slope and intercept at each t
- k_t = k * np.ones_like(t)
- m_t = m * np.ones_like(t)
- for s, t_s in enumerate(changepoint_ts):
- indx = t >= t_s
- k_t[indx] += deltas[s]
- m_t[indx] += gammas[s]
- return k_t * t + m_t
- @staticmethod
- def piecewise_logistic(t, cap, deltas, k, m, changepoint_ts):
- # Compute offset changes
- k_cum = np.concatenate((np.atleast_1d(k), np.cumsum(deltas) + k))
- gammas = np.zeros(len(changepoint_ts))
- for i, t_s in enumerate(changepoint_ts):
- gammas[i] = (
- (t_s - m - np.sum(gammas))
- * (1 - k_cum[i] / k_cum[i + 1])
- )
- # Get cumulative rate and offset at each t
- k_t = k * np.ones_like(t)
- m_t = m * np.ones_like(t)
- for s, t_s in enumerate(changepoint_ts):
- indx = t >= t_s
- k_t[indx] += deltas[s]
- m_t[indx] += gammas[s]
- return cap / (1 + np.exp(-k_t * (t - m_t)))
- def predict_trend(self, df):
- k = np.nanmean(self.params['k'])
- m = np.nanmean(self.params['m'])
- deltas = np.nanmean(self.params['delta'], axis=0)
- t = np.array(df['t'])
- cpts = self.get_changepoint_times()
- if self.growth == 'linear':
- trend = self.piecewise_linear(t, deltas, k, m, cpts)
- else:
- cap = df['cap_scaled']
- trend = self.piecewise_logistic(t, cap, deltas, k, m, cpts)
- return trend * self.y_scale
- def predict_seasonal_components(self, df):
- seasonal_features = self.make_all_seasonality_features(df)
- lower_p = 100 * (1.0 - self.interval_width) / 2
- upper_p = 100 * (1.0 + self.interval_width) / 2
- components = pd.DataFrame({
- 'col': np.arange(seasonal_features.shape[1]),
- 'component': [x.split('_')[0] for x in seasonal_features.columns],
- })
- # Remove the placeholder
- components = components[components['component'] != 'zeros']
- if components.shape[0] > 0:
- X = seasonal_features.as_matrix()
- data = {}
- for component, features in components.groupby('component'):
- cols = features.col.tolist()
- comp_beta = self.params['beta'][:, cols]
- comp_features = X[:, cols]
- comp = (
- np.matmul(comp_features, comp_beta.transpose())
- * self.y_scale
- )
- data[component] = np.nanmean(comp, axis=1)
- data[component + '_lower'] = np.nanpercentile(comp, lower_p,
- axis=1)
- data[component + '_upper'] = np.nanpercentile(comp, upper_p,
- axis=1)
- component_predictions = pd.DataFrame(data)
- component_predictions['seasonal'] = (
- component_predictions[components['component'].unique()].sum(1))
- else:
- component_predictions = pd.DataFrame(
- {'seasonal': np.zeros(df.shape[0])})
- return component_predictions
- def predict_uncertainty(self, df):
- n_iterations = self.params['k'].shape[0]
- samp_per_iter = max(1, int(np.ceil(
- self.uncertainty_samples / float(n_iterations)
- )))
- # Generate seasonality features once so we can re-use them.
- seasonal_features = self.make_all_seasonality_features(df)
- sim_values = {'yhat': [], 'trend': [], 'seasonal': []}
- for i in range(n_iterations):
- for j in range(samp_per_iter):
- sim = self.sample_model(df, seasonal_features, i)
- for key in sim_values:
- sim_values[key].append(sim[key])
- lower_p = 100 * (1.0 - self.interval_width) / 2
- upper_p = 100 * (1.0 + self.interval_width) / 2
- series = {}
- for key, value in sim_values.items():
- mat = np.column_stack(value)
- series['{}_lower'.format(key)] = np.nanpercentile(mat, lower_p,
- axis=1)
- series['{}_upper'.format(key)] = np.nanpercentile(mat, upper_p,
- axis=1)
- return pd.DataFrame(series)
- def sample_model(self, df, seasonal_features, iteration):
- trend = self.sample_predictive_trend(df, iteration)
- beta = self.params['beta'][iteration]
- seasonal = np.matmul(seasonal_features.as_matrix(), beta) * self.y_scale
- sigma = self.params['sigma_obs'][iteration]
- noise = np.random.normal(0, sigma, df.shape[0]) * self.y_scale
- return pd.DataFrame({
- 'yhat': trend + seasonal + noise,
- 'trend': trend,
- 'seasonal': seasonal,
- })
- def sample_predictive_trend(self, df, iteration):
- k = self.params['k'][iteration]
- m = self.params['m'][iteration]
- deltas = self.params['delta'][iteration]
- t = np.array(df['t'])
- changepoint_ts = self.get_changepoint_times()
- T = t.max()
- if T > 1:
- # Get the time discretization of the history
- dt = np.diff(self.history['t'])
- dt = np.min(dt[dt > 0])
- # Number of time periods in the future
- N = np.ceil((T - 1) / float(dt))
- S = len(changepoint_ts)
- prob_change = min(1, (S * (T - 1)) / N)
- n_changes = np.random.binomial(N, prob_change)
- # Sample ts
- changepoint_ts_new = sorted(np.random.uniform(1, T, n_changes))
- else:
- # Case where we're not extrapolating.
- changepoint_ts_new = []
- n_changes = 0
- # Get the empirical scale of the deltas, plus epsilon to avoid NaNs.
- lambda_ = np.mean(np.abs(deltas)) + 1e-8
- # Sample deltas
- deltas_new = np.random.laplace(0, lambda_, n_changes)
- # Prepend the times and deltas from the history
- changepoint_ts = np.concatenate((changepoint_ts, changepoint_ts_new))
- deltas = np.concatenate((deltas, deltas_new))
- if self.growth == 'linear':
- trend = self.piecewise_linear(t, deltas, k, m, changepoint_ts)
- else:
- cap = df['cap_scaled']
- trend = self.piecewise_logistic(t, cap, deltas, k, m,
- changepoint_ts)
- return trend * self.y_scale
- def make_future_dataframe(self, periods, freq='D', include_history=True):
- last_date = self.history['ds'].max()
- dates = pd.date_range(
- start=last_date,
- periods=periods + 1, # closed='right' removes a period
- freq=freq,
- closed='right') # omits the start date
- if include_history:
- dates = np.concatenate((np.array(self.history['ds']), dates))
- return pd.DataFrame({'ds': dates})
- def plot(self, fcst, uncertainty=True, xlabel='ds', ylabel='y'):
- """Plot the Prophet forecast.
- Parameters
- ----------
- fcst: pd.DataFrame output of self.predict.
- uncertainty: Optional boolean to plot uncertainty intervals.
- xlabel: Optional label name on X-axis
- ylabel: Optional label name on Y-axis
- Returns
- -------
- a matplotlib figure.
- """
- forecast_color = '#0072B2'
- fig = plt.figure(facecolor='w', figsize=(10, 6))
- ax = fig.add_subplot(111)
- ax.plot(self.history['ds'].values, self.history['y'], 'k.')
- ax.plot(fcst['ds'].values, fcst['yhat'], ls='-', c=forecast_color)
- if 'cap' in fcst:
- ax.plot(fcst['ds'].values, fcst['cap'], ls='--', c='k')
- if uncertainty:
- ax.fill_between(fcst['ds'].values, fcst['yhat_lower'],
- fcst['yhat_upper'], color=forecast_color, alpha=0.2)
- ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
- ax.set_xlabel(xlabel)
- ax.set_ylabel(ylabel)
- fig.tight_layout()
- return fig
- def plot_components(self, fcst, uncertainty=True):
- """Plot the Prophet forecast components.
- Will plot whichever are available of: trend, holidays, weekly
- seasonality, and yearly seasonality.
- Parameters
- ----------
- fcst: pd.DataFrame output of self.predict.
- uncertainty: Optional boolean to plot uncertainty intervals.
- Returns
- -------
- a matplotlib figure.
- """
- # Identify components to be plotted
- plot_trend = True
- plot_holidays = self.holidays is not None
- plot_weekly = 'weekly' in fcst
- plot_yearly = 'yearly' in fcst
- npanel = plot_trend + plot_holidays + plot_weekly + plot_yearly
- forecast_color = '#0072B2'
- fig = plt.figure(facecolor='w', figsize=(9, 3 * npanel))
- panel_num = 1
- ax = fig.add_subplot(npanel, 1, panel_num)
- ax.plot(fcst['ds'].values, fcst['trend'], ls='-', c=forecast_color)
- if 'cap' in fcst:
- ax.plot(fcst['ds'].values, fcst['cap'], ls='--', c='k')
- if uncertainty:
- ax.fill_between(
- fcst['ds'].values, fcst['trend_lower'], fcst['trend_upper'],
- color=forecast_color, alpha=0.2)
- ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
- ax.xaxis.set_major_locator(MaxNLocator(nbins=7))
- ax.set_xlabel('ds')
- ax.set_ylabel('trend')
- if plot_holidays:
- panel_num += 1
- ax = fig.add_subplot(npanel, 1, panel_num)
- holiday_comps = self.holidays['holiday'].unique()
- y_holiday = fcst[holiday_comps].sum(1)
- y_holiday_l = fcst[[h + '_lower' for h in holiday_comps]].sum(1)
- y_holiday_u = fcst[[h + '_upper' for h in holiday_comps]].sum(1)
- # NOTE the above CI calculation is incorrect if holidays overlap
- # in time. Since it is just for the visualization we will not
- # worry about it now.
- ax.plot(fcst['ds'].values, y_holiday, ls='-', c=forecast_color)
- if uncertainty:
- ax.fill_between(fcst['ds'].values, y_holiday_l, y_holiday_u,
- color=forecast_color, alpha=0.2)
- ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
- ax.xaxis.set_major_locator(MaxNLocator(nbins=7))
- ax.set_xlabel('ds')
- ax.set_ylabel('holidays')
- if plot_weekly:
- panel_num += 1
- ax = fig.add_subplot(npanel, 1, panel_num)
- df_s = fcst.copy()
- df_s['dow'] = df_s['ds'].dt.weekday_name
- df_s = df_s.groupby('dow').first()
- days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday',
- 'Friday', 'Saturday']
- y_weekly = [df_s.loc[d]['weekly'] for d in days]
- y_weekly_l = [df_s.loc[d]['weekly_lower'] for d in days]
- y_weekly_u = [df_s.loc[d]['weekly_upper'] for d in days]
- ax.plot(range(len(days)), y_weekly, ls='-', c=forecast_color)
- if uncertainty:
- ax.fill_between(range(len(days)), y_weekly_l, y_weekly_u,
- color=forecast_color, alpha=0.2)
- ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
- ax.set_xticks(range(len(days)))
- ax.set_xticklabels(days)
- ax.set_xlabel('Day of week')
- ax.set_ylabel('weekly')
- if plot_yearly:
- panel_num += 1
- ax = fig.add_subplot(npanel, 1, panel_num)
- df_s = fcst.copy()
- df_s['doy'] = df_s['ds'].map(lambda x: x.strftime('2000-%m-%d'))
- df_s = df_s.groupby('doy').first().sort_index()
- ax.plot(pd.to_datetime(df_s.index), df_s['yearly'], ls='-',
- c=forecast_color)
- if uncertainty:
- ax.fill_between(
- pd.to_datetime(df_s.index), df_s['yearly_lower'],
- df_s['yearly_upper'], color=forecast_color, alpha=0.2)
- ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
- months = MonthLocator(range(1, 13), bymonthday=1, interval=2)
- ax.xaxis.set_major_formatter(DateFormatter('%B %-d'))
- ax.xaxis.set_major_locator(months)
- ax.set_xlabel('Day of year')
- ax.set_ylabel('yearly')
- fig.tight_layout()
- return fig
- # fb-block 9
|