123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603 |
- library(prophet)
- context("Prophet tests")
- DATA <- read.csv('data.csv')
- N <- nrow(DATA)
- train <- DATA[1:floor(N / 2), ]
- future <- DATA[(ceiling(N/2) + 1):N, ]
- DATA2 <- read.csv('data2.csv')
- DATA$ds <- prophet:::set_date(DATA$ds)
- DATA2$ds <- prophet:::set_date(DATA2$ds)
- test_that("fit_predict", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- m <- prophet(train)
- expect_error(predict(m, future), NA)
- })
- test_that("fit_predict_no_seasons", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- m <- prophet(train, weekly.seasonality = FALSE, yearly.seasonality = FALSE)
- expect_error(predict(m, future), NA)
- })
- test_that("fit_predict_no_changepoints", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- expect_warning({
- # warning from prophet(), error from predict()
- m <- prophet(train, n.changepoints = 0)
- expect_error(predict(m, future), NA)
- })
- })
- test_that("fit_predict_changepoint_not_in_history", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- train_t <- dplyr::mutate(DATA, ds=prophet:::set_date(ds))
- train_t <- dplyr::filter(train_t,
- (ds < prophet:::set_date('2013-01-01')) |
- (ds > prophet:::set_date('2014-01-01')))
- future <- data.frame(ds=DATA$ds)
- expect_warning({
- # warning from prophet(), error from predict()
- m <- prophet(train_t, changepoints=c('2013-06-06'))
- expect_error(predict(m, future), NA)
- })
- })
- test_that("fit_predict_duplicates", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- train2 <- train
- train2$y <- train2$y + 10
- train_t <- rbind(train, train2)
- m <- prophet(train_t)
- expect_error(predict(m, future), NA)
- })
- test_that("fit_predict_constant_history", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- train2 <- train
- train2$y <- 20
- m <- prophet(train2)
- fcst <- predict(m, future)
- expect_equal(tail(fcst$yhat, 1), 20)
- train2$y <- 0
- m <- prophet(train2)
- fcst <- predict(m, future)
- expect_equal(tail(fcst$yhat, 1), 0)
- })
- test_that("setup_dataframe", {
- history <- train
- m <- prophet(history, fit = FALSE)
-
- out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
- history <- out$df
- expect_true('t' %in% colnames(history))
- expect_equal(min(history$t), 0)
- expect_equal(max(history$t), 1)
- expect_true('y_scaled' %in% colnames(history))
- expect_equal(max(history$y_scaled), 1)
- })
- test_that("logistic_floor", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- m <- prophet(growth = 'logistic')
- history <- train
- history$floor <- 10.
- history$cap <- 80.
- future1 <- future
- future1$cap <- 80.
- future1$floor <- 10.
- m <- fit.prophet(m, history, algorithm = 'Newton')
- expect_true(m$logistic.floor)
- expect_true('floor' %in% colnames(m$history))
- expect_equal(m$history$y_scaled[1], 1., tolerance = 1e-6)
- fcst1 <- predict(m, future1)
- m2 <- prophet(growth = 'logistic')
- history2 <- history
- history2$y <- history2$y + 10.
- history2$floor <- history2$floor + 10.
- history2$cap <- history2$cap + 10.
- future1$cap <- future1$cap + 10.
- future1$floor <- future1$floor + 10.
- m2 <- fit.prophet(m2, history2, algorithm = 'Newton')
- expect_equal(m2$history$y_scaled[1], 1., tolerance = 1e-6)
- fcst2 <- predict(m, future1)
- fcst2$yhat <- fcst2$yhat - 10.
- # Check for approximate shift invariance
- expect_true(all(abs(fcst1$yhat - fcst2$yhat) < 1))
- })
- test_that("get_changepoints", {
- history <- train
- m <- prophet(history, fit = FALSE)
- out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
- history <- out$df
- m <- out$m
- m$history <- history
- m <- prophet:::set_changepoints(m)
- cp <- m$changepoints.t
- expect_equal(length(cp), m$n.changepoints)
- expect_true(min(cp) > 0)
- expect_true(max(cp) < N)
- mat <- prophet:::get_changepoint_matrix(m)
- expect_equal(nrow(mat), floor(N / 2))
- expect_equal(ncol(mat), m$n.changepoints)
- })
- test_that("get_zero_changepoints", {
- history <- train
- m <- prophet(history, n.changepoints = 0, fit = FALSE)
-
- out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
- m <- out$m
- history <- out$df
- m$history <- history
- m <- prophet:::set_changepoints(m)
- cp <- m$changepoints.t
- expect_equal(length(cp), 1)
- expect_equal(cp[1], 0)
- mat <- prophet:::get_changepoint_matrix(m)
- expect_equal(nrow(mat), floor(N / 2))
- expect_equal(ncol(mat), 1)
- })
- test_that("override_n_changepoints", {
- history <- train[1:20,]
- m <- prophet(history, fit = FALSE)
- out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
- m <- out$m
- history <- out$df
- m$history <- history
- m <- prophet:::set_changepoints(m)
- expect_equal(m$n.changepoints, 15)
- cp <- m$changepoints.t
- expect_equal(length(cp), 15)
- })
- test_that("fourier_series_weekly", {
- true.values <- c(0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837,
- -0.9009689)
- mat <- prophet:::fourier_series(DATA$ds, 7, 3)
- expect_equal(true.values, mat[1, ], tolerance = 1e-6)
- })
- test_that("fourier_series_yearly", {
- true.values <- c(0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249,
- 0.6874572)
- mat <- prophet:::fourier_series(DATA$ds, 365.25, 3)
- expect_equal(true.values, mat[1, ], tolerance = 1e-6)
- })
- test_that("growth_init", {
- history <- DATA[1:468, ]
- history$cap <- max(history$y)
- m <- prophet(history, growth = 'logistic', fit = FALSE)
- out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
- m <- out$m
- history <- out$df
- params <- prophet:::linear_growth_init(history)
- expect_equal(params[1], 0.3055671, tolerance = 1e-6)
- expect_equal(params[2], 0.5307511, tolerance = 1e-6)
- params <- prophet:::logistic_growth_init(history)
-
- expect_equal(params[1], 1.507925, tolerance = 1e-6)
- expect_equal(params[2], -0.08167497, tolerance = 1e-6)
- })
- test_that("piecewise_linear", {
- t <- seq(0, 10)
- m <- 0
- k <- 1.0
- deltas <- c(0.5)
- changepoint.ts <- c(5)
- y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts)
- y.true <- c(0, 1, 2, 3, 4, 5, 6.5, 8, 9.5, 11, 12.5)
- expect_equal(y, y.true)
- t <- t[8:length(t)]
- y.true <- y.true[8:length(y.true)]
- y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts)
- expect_equal(y, y.true)
- })
- test_that("piecewise_logistic", {
- t <- seq(0, 10)
- cap <- rep(10, 11)
- m <- 0
- k <- 1.0
- deltas <- c(0.5)
- changepoint.ts <- c(5)
- y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts)
- y.true <- c(5.000000, 7.310586, 8.807971, 9.525741, 9.820138, 9.933071,
- 9.984988, 9.996646, 9.999252, 9.999833, 9.999963)
- expect_equal(y, y.true, tolerance = 1e-6)
-
- t <- t[8:length(t)]
- y.true <- y.true[8:length(y.true)]
- cap <- cap[8:length(cap)]
- y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts)
- expect_equal(y, y.true, tolerance = 1e-6)
- })
- test_that("holidays", {
- holidays = data.frame(ds = c('2016-12-25'),
- holiday = c('xmas'),
- lower_window = c(-1),
- upper_window = c(0))
- df <- data.frame(
- ds = seq(prophet:::set_date('2016-12-20'),
- prophet:::set_date('2016-12-31'), by='d'))
- m <- prophet(train, holidays = holidays, fit = FALSE)
- out <- prophet:::make_holiday_features(m, df$ds)
- feats <- out$holiday.features
- priors <- out$prior.scales
- expect_equal(nrow(feats), nrow(df))
- expect_equal(ncol(feats), 2)
- expect_equal(sum(colSums(feats) - c(1, 1)), 0)
- expect_true(all(priors == c(10., 10.)))
- holidays = data.frame(ds = c('2016-12-25'),
- holiday = c('xmas'),
- lower_window = c(-1),
- upper_window = c(10))
- m <- prophet(train, holidays = holidays, fit = FALSE)
- out <- prophet:::make_holiday_features(m, df$ds)
- feats <- out$holiday.features
- priors <- out$prior.scales
- expect_equal(nrow(feats), nrow(df))
- expect_equal(ncol(feats), 12)
- expect_true(all(priors == rep(10, 12)))
- # Check prior specifications
- holidays <- data.frame(
- ds = prophet:::set_date(c('2016-12-25', '2017-12-25')),
- holiday = c('xmas', 'xmas'),
- lower_window = c(-1, -1),
- upper_window = c(0, 0),
- prior_scale = c(5., 5.)
- )
- m <- prophet(holidays = holidays, fit = FALSE)
- out <- prophet:::make_holiday_features(m, df$ds)
- priors <- out$prior.scales
- expect_true(all(priors == c(5., 5.)))
- # 2 different priors
- holidays2 <- data.frame(
- ds = prophet:::set_date(c('2012-06-06', '2013-06-06')),
- holiday = c('seans-bday', 'seans-bday'),
- lower_window = c(0, 0),
- upper_window = c(1, 1),
- prior_scale = c(8, 8)
- )
- holidays2 <- rbind(holidays, holidays2)
- m <- prophet(holidays = holidays2, fit = FALSE)
- out <- prophet:::make_holiday_features(m, df$ds)
- priors <- out$prior.scales
- expect_true(all(priors == c(8, 8, 5, 5)))
- holidays2 <- data.frame(
- ds = prophet:::set_date(c('2012-06-06', '2013-06-06')),
- holiday = c('seans-bday', 'seans-bday'),
- lower_window = c(0, 0),
- upper_window = c(1, 1)
- )
- # manual coercions to avoid below bind_rows() warning
- holidays$holiday <- as.character(holidays$holiday)
- holidays2$holiday <- as.character(holidays2$holiday)
- holidays2 <- dplyr::bind_rows(holidays, holidays2)
- # manual factorizing to avoid above bind_rows() warning
- holidays2$holiday <- factor(holidays2$holiday)
- m <- prophet(holidays = holidays2, fit = FALSE, holidays.prior.scale = 4)
- out <- prophet:::make_holiday_features(m, df$ds)
- priors <- out$prior.scales
- expect_true(all(priors == c(4, 4, 5, 5)))
- # Check incompatible priors
- holidays <- data.frame(
- ds = prophet:::set_date(c('2016-12-25', '2016-12-27')),
- holiday = c('xmasish', 'xmasish'),
- lower_window = c(-1, -1),
- upper_window = c(0, 0),
- prior_scale = c(5., 6.)
- )
- m <- prophet(holidays = holidays, fit = FALSE)
- expect_error(prophet:::make_holiday_features(m, df$ds))
- })
- test_that("fit_with_holidays", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- holidays <- data.frame(ds = c('2012-06-06', '2013-06-06'),
- holiday = c('seans-bday', 'seans-bday'),
- lower_window = c(0, 0),
- upper_window = c(1, 1))
- m <- prophet(DATA, holidays = holidays, uncertainty.samples = 0)
- expect_error(predict(m), NA)
- })
- test_that("make_future_dataframe", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- train.t <- DATA[1:234, ]
- m <- prophet(train.t)
- future <- make_future_dataframe(m, periods = 3, freq = 'day',
- include_history = FALSE)
- correct <- prophet:::set_date(c('2013-04-26', '2013-04-27', '2013-04-28'))
- expect_equal(future$ds, correct)
- future <- make_future_dataframe(m, periods = 3, freq = 'month',
- include_history = FALSE)
- correct <- prophet:::set_date(c('2013-05-25', '2013-06-25', '2013-07-25'))
- expect_equal(future$ds, correct)
- })
- test_that("auto_weekly_seasonality", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- # Should be enabled
- N.w <- 15
- train.w <- DATA[1:N.w, ]
- m <- prophet(train.w, fit = FALSE)
- expect_equal(m$weekly.seasonality, 'auto')
- m <- fit.prophet(m, train.w)
- expect_true('weekly' %in% names(m$seasonalities))
- true <- list(period = 7, fourier.order = 3, prior.scale = 10)
- for (name in names(true)) {
- expect_equal(m$seasonalities$weekly[[name]], true[[name]])
- }
- # Should be disabled due to too short history
- N.w <- 9
- train.w <- DATA[1:N.w, ]
- m <- prophet(train.w)
- expect_false('weekly' %in% names(m$seasonalities))
- expect_warning({
- # prophet warning: non-zero return code in optimizing
- m <- prophet(train.w, weekly.seasonality = TRUE)
- expect_true('weekly' %in% names(m$seasonalities))
- })
- # Should be False due to weekly spacing
- train.w <- DATA[seq(1, nrow(DATA), 7), ]
- m <- prophet(train.w)
- expect_false('weekly' %in% names(m$seasonalities))
- m <- prophet(DATA, weekly.seasonality = 2, seasonality.prior.scale = 3)
- true <- list(period = 7, fourier.order = 2, prior.scale = 3)
- for (name in names(true)) {
- expect_equal(m$seasonalities$weekly[[name]], true[[name]])
- }
- })
- test_that("auto_yearly_seasonality", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- # Should be enabled
- m <- prophet(DATA, fit = FALSE)
- expect_equal(m$yearly.seasonality, 'auto')
- m <- fit.prophet(m, DATA)
- expect_true('yearly' %in% names(m$seasonalities))
- true <- list(period = 365.25, fourier.order = 10, prior.scale = 10)
- for (name in names(true)) {
- expect_equal(m$seasonalities$yearly[[name]], true[[name]])
- }
- # Should be disabled due to too short history
- N.w <- 240
- train.y <- DATA[1:N.w, ]
- m <- prophet(train.y)
- expect_false('yearly' %in% names(m$seasonalities))
- m <- prophet(train.y, yearly.seasonality = TRUE)
- expect_true('yearly' %in% names(m$seasonalities))
- m <- prophet(DATA, yearly.seasonality = 7, seasonality.prior.scale = 3)
- true <- list(period = 365.25, fourier.order = 7, prior.scale = 3)
- for (name in names(true)) {
- expect_equal(m$seasonalities$yearly[[name]], true[[name]])
- }
- })
- test_that("auto_daily_seasonality", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- # Should be enabled
- m <- prophet(DATA2, fit = FALSE)
- expect_equal(m$daily.seasonality, 'auto')
- m <- fit.prophet(m, DATA2)
- expect_true('daily' %in% names(m$seasonalities))
- true <- list(period = 1, fourier.order = 4, prior.scale = 10)
- for (name in names(true)) {
- expect_equal(m$seasonalities$daily[[name]], true[[name]])
- }
- # Should be disabled due to too short history
- N.d <- 430
- train.y <- DATA2[1:N.d, ]
- m <- prophet(train.y)
- expect_false('daily' %in% names(m$seasonalities))
- m <- prophet(train.y, daily.seasonality = TRUE)
- expect_true('daily' %in% names(m$seasonalities))
- m <- prophet(DATA2, daily.seasonality = 7, seasonality.prior.scale = 3)
- true <- list(period = 1, fourier.order = 7, prior.scale = 3)
- for (name in names(true)) {
- expect_equal(m$seasonalities$daily[[name]], true[[name]])
- }
- m <- prophet(DATA)
- expect_false('daily' %in% names(m$seasonalities))
- })
- test_that("test_subdaily_holidays", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- holidays <- data.frame(ds = c('2017-01-02'),
- holiday = c('special_day'))
- m <- prophet(DATA2, holidays=holidays)
- fcst <- predict(m)
- expect_equal(sum(fcst$special_day == 0), 575)
- })
- test_that("custom_seasonality", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- holidays <- data.frame(ds = c('2017-01-02'),
- holiday = c('special_day'),
- prior_scale = c(4))
- m <- prophet(holidays=holidays)
- m <- add_seasonality(m, name='monthly', period=30, fourier.order=5)
- true <- list(period = 30, fourier.order = 5, prior.scale = 10)
- for (name in names(true)) {
- expect_equal(m$seasonalities$monthly[[name]], true[[name]])
- }
- expect_error(
- add_seasonality(m, name='special_day', period=30, fourier_order=5)
- )
- expect_error(
- add_seasonality(m, name='trend', period=30, fourier_order=5)
- )
- m <- add_seasonality(m, name='weekly', period=30, fourier.order=5)
- # Test priors
- m <- prophet(holidays = holidays, yearly.seasonality = FALSE)
- m <- add_seasonality(
- m, name='monthly', period=30, fourier.order=5, prior.scale = 2)
- m <- fit.prophet(m, DATA)
- prior.scales <- prophet:::make_all_seasonality_features(
- m, m$history)$prior.scales
- expect_true(all(prior.scales == c(rep(2, 10), rep(10, 6), 4)))
- })
- test_that("added_regressors", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- m <- prophet()
- m <- add_regressor(m, 'binary_feature', prior.scale=0.2)
- m <- add_regressor(m, 'numeric_feature', prior.scale=0.5)
- m <- add_regressor(m, 'binary_feature2', standardize=TRUE)
- df <- DATA
- df$binary_feature <- c(rep(0, 255), rep(1, 255))
- df$numeric_feature <- 0:509
- # Require all regressors in df
- expect_error(
- fit.prophet(m, df)
- )
- df$binary_feature2 <- c(rep(1, 100), rep(0, 410))
- m <- fit.prophet(m, df)
- # Check that standardizations are correctly set
- true <- list(prior.scale = 0.2, mu = 0, std = 1, standardize = 'auto')
- for (name in names(true)) {
- expect_equal(true[[name]], m$extra_regressors$binary_feature[[name]])
- }
- true <- list(prior.scale = 0.5, mu = 254.5, std = 147.368585)
- for (name in names(true)) {
- expect_equal(true[[name]], m$extra_regressors$numeric_feature[[name]],
- tolerance = 1e-5)
- }
- true <- list(prior.scale = 10., mu = 0.1960784, std = 0.3974183)
- for (name in names(true)) {
- expect_equal(true[[name]], m$extra_regressors$binary_feature2[[name]],
- tolerance = 1e-5)
- }
- # Check that standardization is done correctly
- df2 <- prophet:::setup_dataframe(m, df)$df
- expect_equal(df2$binary_feature[1], 0)
- expect_equal(df2$numeric_feature[1], -1.726962, tolerance = 1e-4)
- expect_equal(df2$binary_feature2[1], 2.022859, tolerance = 1e-4)
- # Check that feature matrix and prior scales are correctly constructed
- out <- prophet:::make_all_seasonality_features(m, df2)
- seasonal.features <- out$seasonal.features
- prior.scales <- out$prior.scales
- expect_true('binary_feature' %in% colnames(seasonal.features))
- expect_true('numeric_feature' %in% colnames(seasonal.features))
- expect_true('binary_feature2' %in% colnames(seasonal.features))
- expect_equal(ncol(seasonal.features), 29)
- expect_true(all(sort(prior.scales[27:29]) == c(0.2, 0.5, 10.)))
- # Check that forecast components are reasonable
- future <- data.frame(
- ds = c('2014-06-01'), binary_feature = c(0), numeric_feature = c(10))
- expect_error(predict(m, future))
- future$binary_feature2 <- 0.
- fcst <- predict(m, future)
- expect_equal(ncol(fcst), 31)
- expect_equal(fcst$binary_feature[1], 0)
- expect_equal(fcst$extra_regressors[1],
- fcst$numeric_feature[1] + fcst$binary_feature2[1])
- expect_equal(fcst$seasonalities[1], fcst$yearly[1] + fcst$weekly[1])
- expect_equal(fcst$seasonal[1],
- fcst$seasonalities[1] + fcst$extra_regressors[1])
- expect_equal(fcst$yhat[1], fcst$trend[1] + fcst$seasonal[1])
- # Check fails if constant extra regressor
- df$constant_feature <- 5
- m <- prophet()
- m <- add_regressor(m, 'constant_feature')
- expect_error(fit.prophet(m, df))
- })
- test_that("copy", {
- skip_if_not(Sys.getenv('R_ARCH') != '/i386')
- df <- DATA
- df$cap <- 200.
- df$binary_feature <- c(rep(0, 255), rep(1, 255))
- inputs <- list(
- growth = c('linear', 'logistic'),
- yearly.seasonality = c(TRUE, FALSE),
- weekly.seasonality = c(TRUE, FALSE),
- daily.seasonality = c(TRUE, FALSE),
- holidays = c('null', 'insert_dataframe')
- )
- products <- expand.grid(inputs)
- for (i in 1:length(products)) {
- if (products$holidays[i] == 'insert_dataframe') {
- holidays <- data.frame(ds=c('2016-12-25'), holiday=c('x'))
- } else {
- holidays <- NULL
- }
- m1 <- prophet(
- growth = as.character(products$growth[i]),
- changepoints = NULL,
- n.changepoints = 3,
- yearly.seasonality = products$yearly.seasonality[i],
- weekly.seasonality = products$weekly.seasonality[i],
- daily.seasonality = products$daily.seasonality[i],
- holidays = holidays,
- seasonality.prior.scale = 1.1,
- holidays.prior.scale = 1.1,
- changepoints.prior.scale = 0.1,
- mcmc.samples = 100,
- interval.width = 0.9,
- uncertainty.samples = 200,
- fit = FALSE
- )
- out <- prophet:::setup_dataframe(m1, df, initialize_scales = TRUE)
- m1 <- out$m
- m1$history <- out$df
- m1 <- prophet:::set_auto_seasonalities(m1)
- m2 <- prophet:::prophet_copy(m1)
- # Values should be copied correctly
- args <- c('growth', 'changepoints', 'n.changepoints', 'holidays',
- 'seasonality.prior.scale', 'holidays.prior.scale',
- 'changepoints.prior.scale', 'mcmc.samples', 'interval.width',
- 'uncertainty.samples')
- for (arg in args) {
- expect_equal(m1[[arg]], m2[[arg]])
- }
- expect_equal(FALSE, m2$yearly.seasonality)
- expect_equal(FALSE, m2$weekly.seasonality)
- expect_equal(FALSE, m2$daily.seasonality)
- expect_equal(m1$yearly.seasonality, 'yearly' %in% names(m2$seasonalities))
- expect_equal(m1$weekly.seasonality, 'weekly' %in% names(m2$seasonalities))
- expect_equal(m1$daily.seasonality, 'daily' %in% names(m2$seasonalities))
- }
- # Check for cutoff and custom seasonality and extra regressors
- changepoints <- seq.Date(as.Date('2012-06-15'), as.Date('2012-09-15'), by='d')
- cutoff <- as.Date('2012-07-25')
- m1 <- prophet(changepoints = changepoints)
- m1 <- add_seasonality(m1, 'custom', 10, 5)
- m1 <- add_regressor(m1, 'binary_feature')
- m1 <- fit.prophet(m1, df)
- m2 <- prophet:::prophet_copy(m1, cutoff)
- changepoints <- changepoints[changepoints <= cutoff]
- expect_equal(prophet:::set_date(changepoints), m2$changepoints)
- expect_true('custom' %in% names(m2$seasonalities))
- expect_true('binary_feature' %in% names(m2$extra_regressors))
- })
|