test_prophet.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. # Copyright (c) 2017-present, Facebook, Inc.
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the BSD-style license found in the
  5. # LICENSE file in the root directory of this source tree. An additional grant
  6. # of patent rights can be found in the PATENTS file in the same directory.
  7. from __future__ import absolute_import
  8. from __future__ import division
  9. from __future__ import print_function
  10. from __future__ import unicode_literals
  11. import numpy as np
  12. import pandas as pd
  13. # fb-block 1 start
  14. import os
  15. import itertools
  16. from unittest import TestCase
  17. from fbprophet import Prophet
  18. DATA = pd.read_csv(
  19. os.path.join(os.path.dirname(__file__), 'data.csv'),
  20. parse_dates=['ds'],
  21. )
  22. DATA2 = pd.read_csv(
  23. os.path.join(os.path.dirname(__file__), 'data2.csv'),
  24. parse_dates=['ds'],
  25. )
  26. # fb-block 1 end
  27. # fb-block 2
  28. class TestProphet(TestCase):
  29. def test_fit_predict(self):
  30. N = DATA.shape[0]
  31. train = DATA.head(N // 2)
  32. future = DATA.tail(N // 2)
  33. forecaster = Prophet()
  34. forecaster.fit(train)
  35. forecaster.predict(future)
  36. def test_fit_predict_no_seasons(self):
  37. N = DATA.shape[0]
  38. train = DATA.head(N // 2)
  39. future = DATA.tail(N // 2)
  40. forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
  41. forecaster.fit(train)
  42. forecaster.predict(future)
  43. def test_fit_predict_no_changepoints(self):
  44. N = DATA.shape[0]
  45. train = DATA.head(N // 2)
  46. future = DATA.tail(N // 2)
  47. forecaster = Prophet(n_changepoints=0)
  48. forecaster.fit(train)
  49. forecaster.predict(future)
  50. def test_fit_changepoint_not_in_history(self):
  51. train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
  52. train[(train['ds'] > '2014-01-01')] += 20
  53. future = pd.DataFrame({'ds': DATA['ds']})
  54. forecaster = Prophet(changepoints=['2013-06-06'])
  55. forecaster.fit(train)
  56. forecaster.predict(future)
  57. def test_fit_predict_duplicates(self):
  58. N = DATA.shape[0]
  59. train1 = DATA.head(N // 2).copy()
  60. train2 = DATA.head(N // 2).copy()
  61. train2['y'] += 10
  62. train = train1.append(train2)
  63. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  64. forecaster = Prophet()
  65. forecaster.fit(train)
  66. forecaster.predict(future)
  67. def test_fit_predict_constant_history(self):
  68. N = DATA.shape[0]
  69. train = DATA.head(N // 2).copy()
  70. train['y'] = 20
  71. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  72. m = Prophet()
  73. m.fit(train)
  74. fcst = m.predict(future)
  75. self.assertEqual(fcst['yhat'].values[-1], 20)
  76. train['y'] = 0
  77. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  78. m = Prophet()
  79. m.fit(train)
  80. fcst = m.predict(future)
  81. self.assertEqual(fcst['yhat'].values[-1], 0)
  82. def test_setup_dataframe(self):
  83. m = Prophet()
  84. N = DATA.shape[0]
  85. history = DATA.head(N // 2).copy()
  86. history = m.setup_dataframe(history, initialize_scales=True)
  87. self.assertTrue('t' in history)
  88. self.assertEqual(history['t'].min(), 0.0)
  89. self.assertEqual(history['t'].max(), 1.0)
  90. self.assertTrue('y_scaled' in history)
  91. self.assertEqual(history['y_scaled'].max(), 1.0)
  92. def test_logistic_floor(self):
  93. m = Prophet(growth='logistic')
  94. N = DATA.shape[0]
  95. history = DATA.head(N // 2).copy()
  96. history['floor'] = 10.
  97. history['cap'] = 80.
  98. future = DATA.tail(N // 2).copy()
  99. future['cap'] = 80.
  100. future['floor'] = 10.
  101. m.fit(history)
  102. self.assertTrue(m.logistic_floor)
  103. self.assertTrue('floor' in m.history)
  104. self.assertAlmostEqual(m.history['y_scaled'][0], 1.)
  105. fcst1 = m.predict(future)
  106. m2 = Prophet(growth='logistic')
  107. history2 = history.copy()
  108. history2['y'] += 10.
  109. history2['floor'] += 10.
  110. history2['cap'] += 10.
  111. future['cap'] += 10.
  112. future['floor'] += 10.
  113. m2.fit(history2)
  114. self.assertAlmostEqual(m2.history['y_scaled'][0], 1.)
  115. fcst2 = m2.predict(future)
  116. fcst2['yhat'] -= 10.
  117. # Check for approximate shift invariance
  118. self.assertTrue((np.abs(fcst1['yhat'] - fcst2['yhat']) < 1).all())
  119. def test_get_changepoints(self):
  120. m = Prophet()
  121. N = DATA.shape[0]
  122. history = DATA.head(N // 2).copy()
  123. history = m.setup_dataframe(history, initialize_scales=True)
  124. m.history = history
  125. m.set_changepoints()
  126. cp = m.changepoints_t
  127. self.assertEqual(cp.shape[0], m.n_changepoints)
  128. self.assertEqual(len(cp.shape), 1)
  129. self.assertTrue(cp.min() > 0)
  130. self.assertTrue(cp.max() < N)
  131. mat = m.get_changepoint_matrix()
  132. self.assertEqual(mat.shape[0], N // 2)
  133. self.assertEqual(mat.shape[1], m.n_changepoints)
  134. def test_get_zero_changepoints(self):
  135. m = Prophet(n_changepoints=0)
  136. N = DATA.shape[0]
  137. history = DATA.head(N // 2).copy()
  138. history = m.setup_dataframe(history, initialize_scales=True)
  139. m.history = history
  140. m.set_changepoints()
  141. cp = m.changepoints_t
  142. self.assertEqual(cp.shape[0], 1)
  143. self.assertEqual(cp[0], 0)
  144. mat = m.get_changepoint_matrix()
  145. self.assertEqual(mat.shape[0], N // 2)
  146. self.assertEqual(mat.shape[1], 1)
  147. def test_override_n_changepoints(self):
  148. m = Prophet()
  149. history = DATA.head(20).copy()
  150. history = m.setup_dataframe(history, initialize_scales=True)
  151. m.history = history
  152. m.set_changepoints()
  153. self.assertEqual(m.n_changepoints, 15)
  154. cp = m.changepoints_t
  155. self.assertEqual(cp.shape[0], 15)
  156. def test_fourier_series_weekly(self):
  157. mat = Prophet.fourier_series(DATA['ds'], 7, 3)
  158. # These are from the R forecast package directly.
  159. true_values = np.array([
  160. 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
  161. ])
  162. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  163. def test_fourier_series_yearly(self):
  164. mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
  165. # These are from the R forecast package directly.
  166. true_values = np.array([
  167. 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
  168. ])
  169. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  170. def test_growth_init(self):
  171. model = Prophet(growth='logistic')
  172. history = DATA.iloc[:468].copy()
  173. history['cap'] = history['y'].max()
  174. history = model.setup_dataframe(history, initialize_scales=True)
  175. k, m = model.linear_growth_init(history)
  176. self.assertAlmostEqual(k, 0.3055671)
  177. self.assertAlmostEqual(m, 0.5307511)
  178. k, m = model.logistic_growth_init(history)
  179. self.assertAlmostEqual(k, 1.507925, places=4)
  180. self.assertAlmostEqual(m, -0.08167497, places=4)
  181. def test_piecewise_linear(self):
  182. model = Prophet()
  183. t = np.arange(11.)
  184. m = 0
  185. k = 1.0
  186. deltas = np.array([0.5])
  187. changepoint_ts = np.array([5])
  188. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  189. y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
  190. 6.5, 8.0, 9.5, 11.0, 12.5])
  191. self.assertEqual((y - y_true).sum(), 0.0)
  192. t = t[8:]
  193. y_true = y_true[8:]
  194. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  195. self.assertEqual((y - y_true).sum(), 0.0)
  196. def test_piecewise_logistic(self):
  197. model = Prophet()
  198. t = np.arange(11.)
  199. cap = np.ones(11) * 10
  200. m = 0
  201. k = 1.0
  202. deltas = np.array([0.5])
  203. changepoint_ts = np.array([5])
  204. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  205. y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
  206. 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
  207. 9.999963])
  208. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  209. t = t[8:]
  210. y_true = y_true[8:]
  211. cap = cap[8:]
  212. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  213. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  214. def test_holidays(self):
  215. holidays = pd.DataFrame({
  216. 'ds': pd.to_datetime(['2016-12-25']),
  217. 'holiday': ['xmas'],
  218. 'lower_window': [-1],
  219. 'upper_window': [0],
  220. })
  221. model = Prophet(holidays=holidays)
  222. df = pd.DataFrame({
  223. 'ds': pd.date_range('2016-12-20', '2016-12-31')
  224. })
  225. feats, priors = model.make_holiday_features(df['ds'])
  226. # 11 columns generated even though only 8 overlap
  227. self.assertEqual(feats.shape, (df.shape[0], 2))
  228. self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
  229. self.assertEqual(priors, [10., 10.]) # Default prior
  230. holidays = pd.DataFrame({
  231. 'ds': pd.to_datetime(['2016-12-25']),
  232. 'holiday': ['xmas'],
  233. 'lower_window': [-1],
  234. 'upper_window': [10],
  235. })
  236. feats, priors = Prophet(holidays=holidays).make_holiday_features(df['ds'])
  237. # 12 columns generated even though only 8 overlap
  238. self.assertEqual(feats.shape, (df.shape[0], 12))
  239. self.assertEqual(priors, list(10. * np.ones(12)))
  240. # Check prior specifications
  241. holidays = pd.DataFrame({
  242. 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
  243. 'holiday': ['xmas', 'xmas'],
  244. 'lower_window': [-1, -1],
  245. 'upper_window': [0, 0],
  246. 'prior_scale': [5., 5.],
  247. })
  248. feats, priors = Prophet(holidays=holidays).make_holiday_features(df['ds'])
  249. self.assertEqual(priors, [5., 5.])
  250. # 2 different priors
  251. holidays2 = pd.DataFrame({
  252. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  253. 'holiday': ['seans-bday'] * 2,
  254. 'lower_window': [0] * 2,
  255. 'upper_window': [1] * 2,
  256. 'prior_scale': [8] * 2,
  257. })
  258. holidays2 = pd.concat((holidays, holidays2))
  259. feats, priors = Prophet(holidays=holidays2).make_holiday_features(df['ds'])
  260. self.assertEqual(priors, [8., 8., 5., 5.])
  261. # Check incompatible priors
  262. holidays = pd.DataFrame({
  263. 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
  264. 'holiday': ['xmas', 'xmas'],
  265. 'lower_window': [-1, -1],
  266. 'upper_window': [0, 0],
  267. 'prior_scale': [5., 6.],
  268. })
  269. with self.assertRaises(ValueError):
  270. Prophet(holidays=holidays).make_holiday_features(df['ds'])
  271. def test_fit_with_holidays(self):
  272. holidays = pd.DataFrame({
  273. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  274. 'holiday': ['seans-bday'] * 2,
  275. 'lower_window': [0] * 2,
  276. 'upper_window': [1] * 2,
  277. })
  278. model = Prophet(holidays=holidays, uncertainty_samples=0)
  279. model.fit(DATA).predict()
  280. def test_make_future_dataframe(self):
  281. N = 468
  282. train = DATA.head(N // 2)
  283. forecaster = Prophet()
  284. forecaster.fit(train)
  285. future = forecaster.make_future_dataframe(periods=3, freq='D',
  286. include_history=False)
  287. correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
  288. self.assertEqual(len(future), 3)
  289. for i in range(3):
  290. self.assertEqual(future.iloc[i]['ds'], correct[i])
  291. future = forecaster.make_future_dataframe(periods=3, freq='M',
  292. include_history=False)
  293. correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
  294. self.assertEqual(len(future), 3)
  295. for i in range(3):
  296. self.assertEqual(future.iloc[i]['ds'], correct[i])
  297. def test_auto_weekly_seasonality(self):
  298. # Should be enabled
  299. N = 15
  300. train = DATA.head(N)
  301. m = Prophet()
  302. self.assertEqual(m.weekly_seasonality, 'auto')
  303. m.fit(train)
  304. self.assertIn('weekly', m.seasonalities)
  305. self.assertEqual(m.seasonalities['weekly'],
  306. {'period': 7, 'fourier_order': 3, 'prior_scale': 10.})
  307. # Should be disabled due to too short history
  308. N = 9
  309. train = DATA.head(N)
  310. m = Prophet()
  311. m.fit(train)
  312. self.assertNotIn('weekly', m.seasonalities)
  313. m = Prophet(weekly_seasonality=True)
  314. m.fit(train)
  315. self.assertIn('weekly', m.seasonalities)
  316. # Should be False due to weekly spacing
  317. train = DATA.iloc[::7, :]
  318. m = Prophet()
  319. m.fit(train)
  320. self.assertNotIn('weekly', m.seasonalities)
  321. m = Prophet(weekly_seasonality=2, seasonality_prior_scale=3.)
  322. m.fit(DATA)
  323. self.assertEqual(m.seasonalities['weekly'],
  324. {'period': 7, 'fourier_order': 2, 'prior_scale': 3.})
  325. def test_auto_yearly_seasonality(self):
  326. # Should be enabled
  327. m = Prophet()
  328. self.assertEqual(m.yearly_seasonality, 'auto')
  329. m.fit(DATA)
  330. self.assertIn('yearly', m.seasonalities)
  331. self.assertEqual(
  332. m.seasonalities['yearly'],
  333. {'period': 365.25, 'fourier_order': 10, 'prior_scale': 10.},
  334. )
  335. # Should be disabled due to too short history
  336. N = 240
  337. train = DATA.head(N)
  338. m = Prophet()
  339. m.fit(train)
  340. self.assertNotIn('yearly', m.seasonalities)
  341. m = Prophet(yearly_seasonality=True)
  342. m.fit(train)
  343. self.assertIn('yearly', m.seasonalities)
  344. m = Prophet(yearly_seasonality=7, seasonality_prior_scale=3.)
  345. m.fit(DATA)
  346. self.assertEqual(
  347. m.seasonalities['yearly'],
  348. {'period': 365.25, 'fourier_order': 7, 'prior_scale': 3.},
  349. )
  350. def test_auto_daily_seasonality(self):
  351. # Should be enabled
  352. m = Prophet()
  353. self.assertEqual(m.daily_seasonality, 'auto')
  354. m.fit(DATA2)
  355. self.assertIn('daily', m.seasonalities)
  356. self.assertEqual(m.seasonalities['daily'],
  357. {'period': 1, 'fourier_order': 4, 'prior_scale': 10.})
  358. # Should be disabled due to too short history
  359. N = 430
  360. train = DATA2.head(N)
  361. m = Prophet()
  362. m.fit(train)
  363. self.assertNotIn('daily', m.seasonalities)
  364. m = Prophet(daily_seasonality=True)
  365. m.fit(train)
  366. self.assertIn('daily', m.seasonalities)
  367. m = Prophet(daily_seasonality=7, seasonality_prior_scale=3.)
  368. m.fit(DATA2)
  369. self.assertEqual(m.seasonalities['daily'],
  370. {'period': 1, 'fourier_order': 7, 'prior_scale': 3.})
  371. m = Prophet()
  372. m.fit(DATA)
  373. self.assertNotIn('daily', m.seasonalities)
  374. def test_subdaily_holidays(self):
  375. holidays = pd.DataFrame({
  376. 'ds': pd.to_datetime(['2017-01-02']),
  377. 'holiday': ['special_day'],
  378. })
  379. m = Prophet(holidays=holidays)
  380. m.fit(DATA2)
  381. fcst = m.predict()
  382. self.assertEqual(sum(fcst['special_day'] == 0), 575)
  383. def test_custom_seasonality(self):
  384. holidays = pd.DataFrame({
  385. 'ds': pd.to_datetime(['2017-01-02']),
  386. 'holiday': ['special_day'],
  387. 'prior_scale': [4.],
  388. })
  389. m = Prophet(holidays=holidays)
  390. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  391. prior_scale=2.)
  392. self.assertEqual(m.seasonalities['monthly'],
  393. {'period': 30, 'fourier_order': 5, 'prior_scale': 2.})
  394. with self.assertRaises(ValueError):
  395. m.add_seasonality(name='special_day', period=30, fourier_order=5)
  396. with self.assertRaises(ValueError):
  397. m.add_seasonality(name='trend', period=30, fourier_order=5)
  398. m.add_seasonality(name='weekly', period=30, fourier_order=5)
  399. # Test priors
  400. m = Prophet(holidays=holidays, yearly_seasonality=False)
  401. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  402. prior_scale=2.)
  403. m.fit(DATA.copy())
  404. seasonal_features, prior_scales = m.make_all_seasonality_features(
  405. m.history)
  406. self.assertEqual(prior_scales, [2.] * 10 + [10.] * 6 + [4.])
  407. def test_added_regressors(self):
  408. m = Prophet()
  409. m.add_regressor('binary_feature', prior_scale=0.2)
  410. m.add_regressor('numeric_feature', prior_scale=0.5)
  411. m.add_regressor('binary_feature2', standardize=True)
  412. df = DATA.copy()
  413. df['binary_feature'] = [0] * 255 + [1] * 255
  414. df['numeric_feature'] = range(510)
  415. with self.assertRaises(ValueError):
  416. # Require all regressors in df
  417. m.fit(df)
  418. df['binary_feature2'] = [1] * 100 + [0] * 410
  419. m.fit(df)
  420. # Check that standardizations are correctly set
  421. self.assertEqual(
  422. m.extra_regressors['binary_feature'],
  423. {'prior_scale': 0.2, 'mu': 0, 'std': 1, 'standardize': 'auto'},
  424. )
  425. self.assertEqual(
  426. m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
  427. self.assertEqual(
  428. m.extra_regressors['numeric_feature']['mu'], 254.5)
  429. self.assertAlmostEqual(
  430. m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
  431. self.assertEqual(
  432. m.extra_regressors['binary_feature2']['prior_scale'], 10.)
  433. self.assertAlmostEqual(
  434. m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
  435. self.assertAlmostEqual(
  436. m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
  437. # Check that standardization is done correctly
  438. df2 = m.setup_dataframe(df.copy())
  439. self.assertEqual(df2['binary_feature'][0], 0)
  440. self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
  441. self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
  442. # Check that feature matrix and prior scales are correctly constructed
  443. seasonal_features, prior_scales = m.make_all_seasonality_features(df2)
  444. self.assertIn('binary_feature', seasonal_features)
  445. self.assertIn('numeric_feature', seasonal_features)
  446. self.assertIn('binary_feature2', seasonal_features)
  447. self.assertEqual(seasonal_features.shape[1], 29)
  448. self.assertEqual(set(prior_scales[26:]), set([0.2, 0.5, 10.]))
  449. # Check that forecast components are reasonable
  450. future = pd.DataFrame({
  451. 'ds': ['2014-06-01'],
  452. 'binary_feature': [0],
  453. 'numeric_feature': [10],
  454. })
  455. with self.assertRaises(ValueError):
  456. m.predict(future)
  457. future['binary_feature2'] = 0
  458. fcst = m.predict(future)
  459. self.assertEqual(fcst.shape[1], 31)
  460. self.assertEqual(fcst['binary_feature'][0], 0)
  461. self.assertEqual(
  462. fcst['extra_regressors'][0],
  463. fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
  464. )
  465. self.assertAlmostEqual(
  466. fcst['seasonalities'][0],
  467. fcst['yearly'][0] + fcst['weekly'][0],
  468. )
  469. self.assertAlmostEqual(
  470. fcst['seasonal'][0],
  471. fcst['seasonalities'][0] + fcst['extra_regressors'][0],
  472. )
  473. self.assertAlmostEqual(
  474. fcst['yhat'][0],
  475. fcst['trend'][0] + fcst['seasonal'][0],
  476. )
  477. def test_copy(self):
  478. # These values are created except for its default values
  479. products = itertools.product(
  480. ['linear', 'logistic'], # growth
  481. [None, pd.to_datetime(['2016-12-25'])], # changepoints
  482. [3], # n_changepoints
  483. [True, False], # yearly_seasonality
  484. [True, False], # weekly_seasonality
  485. [True, False], # daily_seasonality
  486. [None, pd.DataFrame({'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['x']})], # holidays
  487. [1.1], # seasonality_prior_scale
  488. [1.1], # holidays_prior_scale
  489. [0.1], # changepoint_prior_scale
  490. [100], # mcmc_samples
  491. [0.9], # interval_width
  492. [200] # uncertainty_samples
  493. )
  494. # Values should be copied correctly
  495. for product in products:
  496. m1 = Prophet(*product)
  497. m2 = m1.copy()
  498. self.assertEqual(m1.growth, m2.growth)
  499. self.assertEqual(m1.n_changepoints, m2.n_changepoints)
  500. self.assertEqual(m1.changepoints, m2.changepoints)
  501. self.assertEqual(m1.yearly_seasonality, m2.yearly_seasonality)
  502. self.assertEqual(m1.weekly_seasonality, m2.weekly_seasonality)
  503. self.assertEqual(m1.daily_seasonality, m2.daily_seasonality)
  504. if m1.holidays is None:
  505. self.assertEqual(m1.holidays, m2.holidays)
  506. else:
  507. self.assertTrue((m1.holidays == m2.holidays).values.all())
  508. self.assertEqual(m1.seasonality_prior_scale, m2.seasonality_prior_scale)
  509. self.assertEqual(m1.changepoint_prior_scale, m2.changepoint_prior_scale)
  510. self.assertEqual(m1.holidays_prior_scale, m2.holidays_prior_scale)
  511. self.assertEqual(m1.mcmc_samples, m2.mcmc_samples)
  512. self.assertEqual(m1.interval_width, m2.interval_width)
  513. self.assertEqual(m1.uncertainty_samples, m2.uncertainty_samples)
  514. # Check for cutoff
  515. changepoints = pd.date_range('2012-06-15', '2012-09-15')
  516. cutoff = pd.Timestamp('2012-07-25')
  517. m1 = Prophet(changepoints=changepoints)
  518. m1.fit(DATA)
  519. m2 = m1.copy(cutoff=cutoff)
  520. changepoints = changepoints[changepoints <= cutoff]
  521. self.assertTrue((changepoints == m2.changepoints).all())