test_prophet.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685
  1. # Copyright (c) 2017-present, Facebook, Inc.
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the BSD-style license found in the
  5. # LICENSE file in the root directory of this source tree. An additional grant
  6. # of patent rights can be found in the PATENTS file in the same directory.
  7. from __future__ import absolute_import
  8. from __future__ import division
  9. from __future__ import print_function
  10. from __future__ import unicode_literals
  11. import numpy as np
  12. import pandas as pd
  13. # fb-block 1 start
  14. import os
  15. from unittest import TestCase
  16. from fbprophet import Prophet
  17. DATA = pd.read_csv(
  18. os.path.join(os.path.dirname(__file__), 'data.csv'),
  19. parse_dates=['ds'],
  20. )
  21. DATA2 = pd.read_csv(
  22. os.path.join(os.path.dirname(__file__), 'data2.csv'),
  23. parse_dates=['ds'],
  24. )
  25. # fb-block 1 end
  26. # fb-block 2
  27. class TestProphet(TestCase):
  28. def test_fit_predict(self):
  29. N = DATA.shape[0]
  30. train = DATA.head(N // 2)
  31. future = DATA.tail(N // 2)
  32. forecaster = Prophet()
  33. forecaster.fit(train)
  34. forecaster.predict(future)
  35. def test_fit_predict_no_seasons(self):
  36. N = DATA.shape[0]
  37. train = DATA.head(N // 2)
  38. future = DATA.tail(N // 2)
  39. forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
  40. forecaster.fit(train)
  41. forecaster.predict(future)
  42. def test_fit_predict_no_changepoints(self):
  43. N = DATA.shape[0]
  44. train = DATA.head(N // 2)
  45. future = DATA.tail(N // 2)
  46. forecaster = Prophet(n_changepoints=0)
  47. forecaster.fit(train)
  48. forecaster.predict(future)
  49. def test_fit_changepoint_not_in_history(self):
  50. train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
  51. future = pd.DataFrame({'ds': DATA['ds']})
  52. forecaster = Prophet(changepoints=['2013-06-06'])
  53. forecaster.fit(train)
  54. forecaster.predict(future)
  55. def test_fit_predict_duplicates(self):
  56. N = DATA.shape[0]
  57. train1 = DATA.head(N // 2).copy()
  58. train2 = DATA.head(N // 2).copy()
  59. train2['y'] += 10
  60. train = train1.append(train2)
  61. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  62. forecaster = Prophet()
  63. forecaster.fit(train)
  64. forecaster.predict(future)
  65. def test_fit_predict_constant_history(self):
  66. N = DATA.shape[0]
  67. train = DATA.head(N // 2).copy()
  68. train['y'] = 20
  69. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  70. m = Prophet()
  71. m.fit(train)
  72. fcst = m.predict(future)
  73. self.assertEqual(fcst['yhat'].values[-1], 20)
  74. train['y'] = 0
  75. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  76. m = Prophet()
  77. m.fit(train)
  78. fcst = m.predict(future)
  79. self.assertEqual(fcst['yhat'].values[-1], 0)
  80. def test_setup_dataframe(self):
  81. m = Prophet()
  82. N = DATA.shape[0]
  83. history = DATA.head(N // 2).copy()
  84. history = m.setup_dataframe(history, initialize_scales=True)
  85. self.assertTrue('t' in history)
  86. self.assertEqual(history['t'].min(), 0.0)
  87. self.assertEqual(history['t'].max(), 1.0)
  88. self.assertTrue('y_scaled' in history)
  89. self.assertEqual(history['y_scaled'].max(), 1.0)
  90. def test_logistic_floor(self):
  91. m = Prophet(growth='logistic')
  92. N = DATA.shape[0]
  93. history = DATA.head(N // 2).copy()
  94. history['floor'] = 10.
  95. history['cap'] = 80.
  96. future = DATA.tail(N // 2).copy()
  97. future['cap'] = 80.
  98. future['floor'] = 10.
  99. m.fit(history, algorithm='Newton')
  100. self.assertTrue(m.logistic_floor)
  101. self.assertTrue('floor' in m.history)
  102. self.assertAlmostEqual(m.history['y_scaled'][0], 1.)
  103. fcst1 = m.predict(future)
  104. m2 = Prophet(growth='logistic')
  105. history2 = history.copy()
  106. history2['y'] += 10.
  107. history2['floor'] += 10.
  108. history2['cap'] += 10.
  109. future['cap'] += 10.
  110. future['floor'] += 10.
  111. m2.fit(history2, algorithm='Newton')
  112. self.assertAlmostEqual(m2.history['y_scaled'][0], 1.)
  113. fcst2 = m2.predict(future)
  114. fcst2['yhat'] -= 10.
  115. # Check for approximate shift invariance
  116. self.assertTrue((np.abs(fcst1['yhat'] - fcst2['yhat']) < 1).all())
  117. def test_get_changepoints(self):
  118. m = Prophet()
  119. N = DATA.shape[0]
  120. history = DATA.head(N // 2).copy()
  121. history = m.setup_dataframe(history, initialize_scales=True)
  122. m.history = history
  123. m.set_changepoints()
  124. cp = m.changepoints_t
  125. self.assertEqual(cp.shape[0], m.n_changepoints)
  126. self.assertEqual(len(cp.shape), 1)
  127. self.assertTrue(cp.min() > 0)
  128. self.assertTrue(cp.max() < 1)
  129. def test_get_zero_changepoints(self):
  130. m = Prophet(n_changepoints=0)
  131. N = DATA.shape[0]
  132. history = DATA.head(N // 2).copy()
  133. history = m.setup_dataframe(history, initialize_scales=True)
  134. m.history = history
  135. m.set_changepoints()
  136. cp = m.changepoints_t
  137. self.assertEqual(cp.shape[0], 1)
  138. self.assertEqual(cp[0], 0)
  139. def test_override_n_changepoints(self):
  140. m = Prophet()
  141. history = DATA.head(20).copy()
  142. history = m.setup_dataframe(history, initialize_scales=True)
  143. m.history = history
  144. m.set_changepoints()
  145. self.assertEqual(m.n_changepoints, 15)
  146. cp = m.changepoints_t
  147. self.assertEqual(cp.shape[0], 15)
  148. def test_fourier_series_weekly(self):
  149. mat = Prophet.fourier_series(DATA['ds'], 7, 3)
  150. # These are from the R forecast package directly.
  151. true_values = np.array([
  152. 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
  153. ])
  154. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  155. def test_fourier_series_yearly(self):
  156. mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
  157. # These are from the R forecast package directly.
  158. true_values = np.array([
  159. 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
  160. ])
  161. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  162. def test_growth_init(self):
  163. model = Prophet(growth='logistic')
  164. history = DATA.iloc[:468].copy()
  165. history['cap'] = history['y'].max()
  166. history = model.setup_dataframe(history, initialize_scales=True)
  167. k, m = model.linear_growth_init(history)
  168. self.assertAlmostEqual(k, 0.3055671)
  169. self.assertAlmostEqual(m, 0.5307511)
  170. k, m = model.logistic_growth_init(history)
  171. self.assertAlmostEqual(k, 1.507925, places=4)
  172. self.assertAlmostEqual(m, -0.08167497, places=4)
  173. def test_piecewise_linear(self):
  174. model = Prophet()
  175. t = np.arange(11.)
  176. m = 0
  177. k = 1.0
  178. deltas = np.array([0.5])
  179. changepoint_ts = np.array([5])
  180. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  181. y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
  182. 6.5, 8.0, 9.5, 11.0, 12.5])
  183. self.assertEqual((y - y_true).sum(), 0.0)
  184. t = t[8:]
  185. y_true = y_true[8:]
  186. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  187. self.assertEqual((y - y_true).sum(), 0.0)
  188. def test_piecewise_logistic(self):
  189. model = Prophet()
  190. t = np.arange(11.)
  191. cap = np.ones(11) * 10
  192. m = 0
  193. k = 1.0
  194. deltas = np.array([0.5])
  195. changepoint_ts = np.array([5])
  196. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  197. y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
  198. 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
  199. 9.999963])
  200. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  201. t = t[8:]
  202. y_true = y_true[8:]
  203. cap = cap[8:]
  204. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  205. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  206. def test_holidays(self):
  207. holidays = pd.DataFrame({
  208. 'ds': pd.to_datetime(['2016-12-25']),
  209. 'holiday': ['xmas'],
  210. 'lower_window': [-1],
  211. 'upper_window': [0],
  212. })
  213. model = Prophet(holidays=holidays)
  214. df = pd.DataFrame({
  215. 'ds': pd.date_range('2016-12-20', '2016-12-31')
  216. })
  217. feats, priors, names = model.make_holiday_features(df['ds'])
  218. # 11 columns generated even though only 8 overlap
  219. self.assertEqual(feats.shape, (df.shape[0], 2))
  220. self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
  221. self.assertEqual(priors, [10., 10.]) # Default prior
  222. self.assertEqual(names, ['xmas'])
  223. holidays = pd.DataFrame({
  224. 'ds': pd.to_datetime(['2016-12-25']),
  225. 'holiday': ['xmas'],
  226. 'lower_window': [-1],
  227. 'upper_window': [10],
  228. })
  229. m = Prophet(holidays=holidays)
  230. feats, priors, names = m.make_holiday_features(df['ds'])
  231. # 12 columns generated even though only 8 overlap
  232. self.assertEqual(feats.shape, (df.shape[0], 12))
  233. self.assertEqual(priors, list(10. * np.ones(12)))
  234. self.assertEqual(names, ['xmas'])
  235. # Check prior specifications
  236. holidays = pd.DataFrame({
  237. 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
  238. 'holiday': ['xmas', 'xmas'],
  239. 'lower_window': [-1, -1],
  240. 'upper_window': [0, 0],
  241. 'prior_scale': [5., 5.],
  242. })
  243. m = Prophet(holidays=holidays)
  244. feats, priors, names = m.make_holiday_features(df['ds'])
  245. self.assertEqual(priors, [5., 5.])
  246. self.assertEqual(names, ['xmas'])
  247. # 2 different priors
  248. holidays2 = pd.DataFrame({
  249. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  250. 'holiday': ['seans-bday'] * 2,
  251. 'lower_window': [0] * 2,
  252. 'upper_window': [1] * 2,
  253. 'prior_scale': [8] * 2,
  254. })
  255. holidays2 = pd.concat((holidays, holidays2))
  256. m = Prophet(holidays=holidays2)
  257. feats, priors, names = m.make_holiday_features(df['ds'])
  258. self.assertEqual(priors, [8., 8., 5., 5.])
  259. self.assertEqual(set(names), {'xmas', 'seans-bday'})
  260. holidays2 = pd.DataFrame({
  261. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  262. 'holiday': ['seans-bday'] * 2,
  263. 'lower_window': [0] * 2,
  264. 'upper_window': [1] * 2,
  265. })
  266. holidays2 = pd.concat((holidays, holidays2))
  267. feats, priors, names = Prophet(
  268. holidays=holidays2, holidays_prior_scale=4
  269. ).make_holiday_features(df['ds'])
  270. self.assertEqual(priors, [4., 4., 5., 5.])
  271. # Check incompatible priors
  272. holidays = pd.DataFrame({
  273. 'ds': pd.to_datetime(['2016-12-25', '2016-12-27']),
  274. 'holiday': ['xmasish', 'xmasish'],
  275. 'lower_window': [-1, -1],
  276. 'upper_window': [0, 0],
  277. 'prior_scale': [5., 6.],
  278. })
  279. with self.assertRaises(ValueError):
  280. Prophet(holidays=holidays).make_holiday_features(df['ds'])
  281. def test_fit_with_holidays(self):
  282. holidays = pd.DataFrame({
  283. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  284. 'holiday': ['seans-bday'] * 2,
  285. 'lower_window': [0] * 2,
  286. 'upper_window': [1] * 2,
  287. })
  288. model = Prophet(holidays=holidays, uncertainty_samples=0)
  289. model.fit(DATA).predict()
  290. def test_make_future_dataframe(self):
  291. N = 468
  292. train = DATA.head(N // 2)
  293. forecaster = Prophet()
  294. forecaster.fit(train)
  295. future = forecaster.make_future_dataframe(periods=3, freq='D',
  296. include_history=False)
  297. correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
  298. self.assertEqual(len(future), 3)
  299. for i in range(3):
  300. self.assertEqual(future.iloc[i]['ds'], correct[i])
  301. future = forecaster.make_future_dataframe(periods=3, freq='M',
  302. include_history=False)
  303. correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
  304. self.assertEqual(len(future), 3)
  305. for i in range(3):
  306. self.assertEqual(future.iloc[i]['ds'], correct[i])
  307. def test_auto_weekly_seasonality(self):
  308. # Should be enabled
  309. N = 15
  310. train = DATA.head(N)
  311. m = Prophet()
  312. self.assertEqual(m.weekly_seasonality, 'auto')
  313. m.fit(train)
  314. self.assertIn('weekly', m.seasonalities)
  315. self.assertEqual(
  316. m.seasonalities['weekly'],
  317. {
  318. 'period': 7,
  319. 'fourier_order': 3,
  320. 'prior_scale': 10.,
  321. 'mode': 'additive',
  322. },
  323. )
  324. # Should be disabled due to too short history
  325. N = 9
  326. train = DATA.head(N)
  327. m = Prophet()
  328. m.fit(train)
  329. self.assertNotIn('weekly', m.seasonalities)
  330. m = Prophet(weekly_seasonality=True)
  331. m.fit(train)
  332. self.assertIn('weekly', m.seasonalities)
  333. # Should be False due to weekly spacing
  334. train = DATA.iloc[::7, :]
  335. m = Prophet()
  336. m.fit(train)
  337. self.assertNotIn('weekly', m.seasonalities)
  338. m = Prophet(weekly_seasonality=2, seasonality_prior_scale=3.)
  339. m.fit(DATA)
  340. self.assertEqual(
  341. m.seasonalities['weekly'],
  342. {
  343. 'period': 7,
  344. 'fourier_order': 2,
  345. 'prior_scale': 3.,
  346. 'mode': 'additive',
  347. },
  348. )
  349. def test_auto_yearly_seasonality(self):
  350. # Should be enabled
  351. m = Prophet()
  352. self.assertEqual(m.yearly_seasonality, 'auto')
  353. m.fit(DATA)
  354. self.assertIn('yearly', m.seasonalities)
  355. self.assertEqual(
  356. m.seasonalities['yearly'],
  357. {
  358. 'period': 365.25,
  359. 'fourier_order': 10,
  360. 'prior_scale': 10.,
  361. 'mode': 'additive',
  362. },
  363. )
  364. # Should be disabled due to too short history
  365. N = 240
  366. train = DATA.head(N)
  367. m = Prophet()
  368. m.fit(train)
  369. self.assertNotIn('yearly', m.seasonalities)
  370. m = Prophet(yearly_seasonality=True)
  371. m.fit(train)
  372. self.assertIn('yearly', m.seasonalities)
  373. m = Prophet(yearly_seasonality=7, seasonality_prior_scale=3.)
  374. m.fit(DATA)
  375. self.assertEqual(
  376. m.seasonalities['yearly'],
  377. {
  378. 'period': 365.25,
  379. 'fourier_order': 7,
  380. 'prior_scale': 3.,
  381. 'mode': 'additive',
  382. },
  383. )
  384. def test_auto_daily_seasonality(self):
  385. # Should be enabled
  386. m = Prophet()
  387. self.assertEqual(m.daily_seasonality, 'auto')
  388. m.fit(DATA2)
  389. self.assertIn('daily', m.seasonalities)
  390. self.assertEqual(
  391. m.seasonalities['daily'],
  392. {
  393. 'period': 1,
  394. 'fourier_order': 4,
  395. 'prior_scale': 10.,
  396. 'mode': 'additive',
  397. },
  398. )
  399. # Should be disabled due to too short history
  400. N = 430
  401. train = DATA2.head(N)
  402. m = Prophet()
  403. m.fit(train)
  404. self.assertNotIn('daily', m.seasonalities)
  405. m = Prophet(daily_seasonality=True)
  406. m.fit(train)
  407. self.assertIn('daily', m.seasonalities)
  408. m = Prophet(daily_seasonality=7, seasonality_prior_scale=3.)
  409. m.fit(DATA2)
  410. self.assertEqual(
  411. m.seasonalities['daily'],
  412. {
  413. 'period': 1,
  414. 'fourier_order': 7,
  415. 'prior_scale': 3.,
  416. 'mode': 'additive',
  417. },
  418. )
  419. m = Prophet()
  420. m.fit(DATA)
  421. self.assertNotIn('daily', m.seasonalities)
  422. def test_subdaily_holidays(self):
  423. holidays = pd.DataFrame({
  424. 'ds': pd.to_datetime(['2017-01-02']),
  425. 'holiday': ['special_day'],
  426. })
  427. m = Prophet(holidays=holidays)
  428. m.fit(DATA2)
  429. fcst = m.predict()
  430. self.assertEqual(sum(fcst['special_day'] == 0), 575)
  431. def test_custom_seasonality(self):
  432. holidays = pd.DataFrame({
  433. 'ds': pd.to_datetime(['2017-01-02']),
  434. 'holiday': ['special_day'],
  435. 'prior_scale': [4.],
  436. })
  437. m = Prophet(holidays=holidays)
  438. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  439. prior_scale=2.)
  440. self.assertEqual(
  441. m.seasonalities['monthly'],
  442. {
  443. 'period': 30,
  444. 'fourier_order': 5,
  445. 'prior_scale': 2.,
  446. 'mode': 'additive',
  447. },
  448. )
  449. with self.assertRaises(ValueError):
  450. m.add_seasonality(name='special_day', period=30, fourier_order=5)
  451. with self.assertRaises(ValueError):
  452. m.add_seasonality(name='trend', period=30, fourier_order=5)
  453. m.add_seasonality(name='weekly', period=30, fourier_order=5)
  454. # Test priors
  455. m = Prophet(
  456. holidays=holidays, yearly_seasonality=False,
  457. seasonality_mode='multiplicative',
  458. )
  459. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  460. prior_scale=2., mode='additive')
  461. m.fit(DATA.copy())
  462. self.assertEqual(m.seasonalities['monthly']['mode'], 'additive')
  463. self.assertEqual(m.seasonalities['weekly']['mode'], 'multiplicative')
  464. seasonal_features, prior_scales, component_cols, modes = (
  465. m.make_all_seasonality_features(m.history)
  466. )
  467. self.assertEqual(sum(component_cols['monthly']), 10)
  468. self.assertEqual(sum(component_cols['special_day']), 1)
  469. self.assertEqual(sum(component_cols['weekly']), 6)
  470. self.assertEqual(sum(component_cols['additive_terms']), 10)
  471. self.assertEqual(sum(component_cols['multiplicative_terms']), 7)
  472. if seasonal_features.columns[0] == 'monthly_delim_1':
  473. true = [2.] * 10 + [10.] * 6 + [4.]
  474. self.assertEqual(sum(component_cols['monthly'][:10]), 10)
  475. self.assertEqual(sum(component_cols['weekly'][10:16]), 6)
  476. else:
  477. true = [10.] * 6 + [2.] * 10 + [4.]
  478. self.assertEqual(sum(component_cols['weekly'][:6]), 6)
  479. self.assertEqual(sum(component_cols['monthly'][6:16]), 10)
  480. self.assertEqual(prior_scales, true)
  481. def test_added_regressors(self):
  482. m = Prophet()
  483. m.add_regressor('binary_feature', prior_scale=0.2)
  484. m.add_regressor('numeric_feature', prior_scale=0.5)
  485. m.add_regressor(
  486. 'numeric_feature2', prior_scale=0.5, mode='multiplicative'
  487. )
  488. m.add_regressor('binary_feature2', standardize=True)
  489. df = DATA.copy()
  490. df['binary_feature'] = [0] * 255 + [1] * 255
  491. df['numeric_feature'] = range(510)
  492. df['numeric_feature2'] = range(510)
  493. with self.assertRaises(ValueError):
  494. # Require all regressors in df
  495. m.fit(df)
  496. df['binary_feature2'] = [1] * 100 + [0] * 410
  497. m.fit(df)
  498. # Check that standardizations are correctly set
  499. self.assertEqual(
  500. m.extra_regressors['binary_feature'],
  501. {
  502. 'prior_scale': 0.2,
  503. 'mu': 0,
  504. 'std': 1,
  505. 'standardize': 'auto',
  506. 'mode': 'additive',
  507. },
  508. )
  509. self.assertEqual(
  510. m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
  511. self.assertEqual(
  512. m.extra_regressors['numeric_feature']['mu'], 254.5)
  513. self.assertAlmostEqual(
  514. m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
  515. self.assertEqual(
  516. m.extra_regressors['numeric_feature2']['mode'], 'multiplicative')
  517. self.assertEqual(
  518. m.extra_regressors['binary_feature2']['prior_scale'], 10.)
  519. self.assertAlmostEqual(
  520. m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
  521. self.assertAlmostEqual(
  522. m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
  523. # Check that standardization is done correctly
  524. df2 = m.setup_dataframe(df.copy())
  525. self.assertEqual(df2['binary_feature'][0], 0)
  526. self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
  527. self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
  528. # Check that feature matrix and prior scales are correctly constructed
  529. seasonal_features, prior_scales, component_cols, modes = (
  530. m.make_all_seasonality_features(df2)
  531. )
  532. self.assertEqual(seasonal_features.shape[1], 30)
  533. names = ['binary_feature', 'numeric_feature', 'binary_feature2']
  534. true_priors = [0.2, 0.5, 10.]
  535. for i, name in enumerate(names):
  536. self.assertIn(name, seasonal_features)
  537. self.assertEqual(sum(component_cols[name]), 1)
  538. self.assertEqual(
  539. sum(np.array(prior_scales) * component_cols[name]),
  540. true_priors[i],
  541. )
  542. # Check that forecast components are reasonable
  543. future = pd.DataFrame({
  544. 'ds': ['2014-06-01'],
  545. 'binary_feature': [0],
  546. 'numeric_feature': [10],
  547. 'numeric_feature2': [10],
  548. })
  549. with self.assertRaises(ValueError):
  550. m.predict(future)
  551. future['binary_feature2'] = 0
  552. fcst = m.predict(future)
  553. self.assertEqual(fcst.shape[1], 37)
  554. self.assertEqual(fcst['binary_feature'][0], 0)
  555. self.assertAlmostEqual(
  556. fcst['extra_regressors_additive'][0],
  557. fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
  558. )
  559. self.assertAlmostEqual(
  560. fcst['extra_regressors_multiplicative'][0],
  561. fcst['numeric_feature2'][0],
  562. )
  563. self.assertAlmostEqual(
  564. fcst['additive_terms'][0],
  565. fcst['yearly'][0] + fcst['weekly'][0]
  566. + fcst['extra_regressors_additive'][0],
  567. )
  568. self.assertAlmostEqual(
  569. fcst['multiplicative_terms'][0],
  570. fcst['extra_regressors_multiplicative'][0],
  571. )
  572. self.assertAlmostEqual(
  573. fcst['yhat'][0],
  574. fcst['trend'][0] * (1 + fcst['multiplicative_terms'][0])
  575. + fcst['additive_terms'][0],
  576. )
  577. # Check fails if constant extra regressor
  578. df['constant_feature'] = 5
  579. m = Prophet()
  580. m.add_regressor('constant_feature')
  581. with self.assertRaises(ValueError):
  582. m.fit(df.copy())
  583. def test_set_seasonality_mode(self):
  584. # Setting attribute
  585. m = Prophet()
  586. self.assertEqual(m.seasonality_mode, 'additive')
  587. m = Prophet(seasonality_mode='multiplicative')
  588. self.assertEqual(m.seasonality_mode, 'multiplicative')
  589. with self.assertRaises(ValueError):
  590. Prophet(seasonality_mode='batman')
  591. def test_seasonality_modes(self):
  592. # Model with holidays, seasonalities, and extra regressors
  593. holidays = pd.DataFrame({
  594. 'ds': pd.to_datetime(['2016-12-25']),
  595. 'holiday': ['xmas'],
  596. 'lower_window': [-1],
  597. 'upper_window': [0],
  598. })
  599. m = Prophet(seasonality_mode='multiplicative', holidays=holidays)
  600. m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3)
  601. m.add_regressor('binary_feature', mode='additive')
  602. m.add_regressor('numeric_feature')
  603. # Construct seasonal features
  604. df = DATA.copy()
  605. df['binary_feature'] = [0] * 255 + [1] * 255
  606. df['numeric_feature'] = range(510)
  607. df = m.setup_dataframe(df, initialize_scales=True)
  608. m.history = df.copy()
  609. m.set_auto_seasonalities()
  610. seasonal_features, prior_scales, component_cols, modes = (
  611. m.make_all_seasonality_features(df))
  612. self.assertEqual(sum(component_cols['additive_terms']), 7)
  613. self.assertEqual(sum(component_cols['multiplicative_terms']), 29)
  614. self.assertEqual(
  615. set(modes['additive']),
  616. {'monthly', 'binary_feature', 'additive_terms',
  617. 'extra_regressors_additive'},
  618. )
  619. self.assertEqual(
  620. set(modes['multiplicative']),
  621. {'weekly', 'yearly', 'xmas', 'numeric_feature',
  622. 'multiplicative_terms', 'extra_regressors_multiplicative',
  623. 'holidays',
  624. },
  625. )