Ben Letham 41d4ab472f Set noise prior variance to current value for linear growth model 7 tahun lalu
..
fbprophet cbe1f5e623 Documentation and plot fix for multiplicative seasonality 7 tahun lalu
stan 41d4ab472f Set noise prior variance to current value for linear growth model 7 tahun lalu
LICENSE 9977a97266 Copy of LICENSE in python repo 8 tahun lalu
MANIFEST.in 55d7d1e62d Single stan model with both trends (Py) 7 tahun lalu
README a44b209696 Github organization change 8 tahun lalu
requirements.txt 7e170ffba5 Up pandas requirement to 0.20.1 to avoid bug from #256 7 tahun lalu
setup.py 55d7d1e62d Single stan model with both trends (Py) 7 tahun lalu

README

Prophet: Automatic Forecasting Procedure
========================================

Prophet is a procedure for forecasting time series data. It is based on an additive model where non-linear trends are fit with yearly and weekly seasonality, plus holidays. It works best with daily periodicity data with at least one year of historical data. Prophet is robust to missing data, shifts in the trend, and large outliers.

Prophet is `open source software `_ released by Facebook's `Core Data Science team `_.

Full documentation and examples available at the homepage: https://facebook.github.io/prophet/

Important links
---------------

- HTML documentation: https://facebook.github.io/prophet/docs/quick_start.html
- Issue tracker: https://github.com/facebook/prophet/issues
- Source code repository: https://github.com/facebook/prophet
- Implementation of Prophet in R: https://cran.r-project.org/package=prophet


Other forecasting packages
--------------------------

- Rob Hyndman's `forecast package `_
- `Statsmodels `_


Installation
------------

::

$ pip install fbprophet


Note: Installation requires PyStan, which has its `own installation instructions `_. On Windows, PyStan requires a compiler so you'll need to `follow the instructions`_. The key step is installing a recent `C++ compiler `_.

Example usage
-------------

::

>>> from fbprophet import Prophet
>>> m = Prophet()
>>> m.fit(df) # df is a pandas.DataFrame with 'y' and 'ds' columns
>>> future = m.make_future_dataframe(periods=365)
>>> m.predict(future)