test_prophet.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
  1. # Copyright (c) 2017-present, Facebook, Inc.
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the BSD-style license found in the
  5. # LICENSE file in the root directory of this source tree. An additional grant
  6. # of patent rights can be found in the PATENTS file in the same directory.
  7. from __future__ import absolute_import
  8. from __future__ import division
  9. from __future__ import print_function
  10. from __future__ import unicode_literals
  11. import os
  12. from unittest import TestCase
  13. import numpy as np
  14. import pandas as pd
  15. from fbprophet import Prophet
  16. DATA = pd.read_csv(
  17. os.path.join(os.path.dirname(__file__), 'data.csv'),
  18. parse_dates=['ds'],
  19. )
  20. DATA2 = pd.read_csv(
  21. os.path.join(os.path.dirname(__file__), 'data2.csv'),
  22. parse_dates=['ds'],
  23. )
  24. class TestProphet(TestCase):
  25. def test_fit_predict(self):
  26. N = DATA.shape[0]
  27. train = DATA.head(N // 2)
  28. future = DATA.tail(N // 2)
  29. forecaster = Prophet()
  30. forecaster.fit(train)
  31. forecaster.predict(future)
  32. def test_fit_predict_no_seasons(self):
  33. N = DATA.shape[0]
  34. train = DATA.head(N // 2)
  35. future = DATA.tail(N // 2)
  36. forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
  37. forecaster.fit(train)
  38. forecaster.predict(future)
  39. def test_fit_predict_no_changepoints(self):
  40. N = DATA.shape[0]
  41. train = DATA.head(N // 2)
  42. future = DATA.tail(N // 2)
  43. forecaster = Prophet(n_changepoints=0)
  44. forecaster.fit(train)
  45. forecaster.predict(future)
  46. def test_fit_changepoint_not_in_history(self):
  47. train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
  48. future = pd.DataFrame({'ds': DATA['ds']})
  49. forecaster = Prophet(changepoints=['2013-06-06'])
  50. forecaster.fit(train)
  51. forecaster.predict(future)
  52. def test_fit_predict_duplicates(self):
  53. N = DATA.shape[0]
  54. train1 = DATA.head(N // 2).copy()
  55. train2 = DATA.head(N // 2).copy()
  56. train2['y'] += 10
  57. train = train1.append(train2)
  58. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  59. forecaster = Prophet()
  60. forecaster.fit(train)
  61. forecaster.predict(future)
  62. def test_fit_predict_constant_history(self):
  63. N = DATA.shape[0]
  64. train = DATA.head(N // 2).copy()
  65. train['y'] = 20
  66. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  67. m = Prophet()
  68. m.fit(train)
  69. fcst = m.predict(future)
  70. self.assertEqual(fcst['yhat'].values[-1], 20)
  71. train['y'] = 0
  72. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  73. m = Prophet()
  74. m.fit(train)
  75. fcst = m.predict(future)
  76. self.assertEqual(fcst['yhat'].values[-1], 0)
  77. def test_setup_dataframe(self):
  78. m = Prophet()
  79. N = DATA.shape[0]
  80. history = DATA.head(N // 2).copy()
  81. history = m.setup_dataframe(history, initialize_scales=True)
  82. self.assertTrue('t' in history)
  83. self.assertEqual(history['t'].min(), 0.0)
  84. self.assertEqual(history['t'].max(), 1.0)
  85. self.assertTrue('y_scaled' in history)
  86. self.assertEqual(history['y_scaled'].max(), 1.0)
  87. def test_logistic_floor(self):
  88. m = Prophet(growth='logistic')
  89. N = DATA.shape[0]
  90. history = DATA.head(N // 2).copy()
  91. history['floor'] = 10.
  92. history['cap'] = 80.
  93. future = DATA.tail(N // 2).copy()
  94. future['cap'] = 80.
  95. future['floor'] = 10.
  96. m.fit(history, algorithm='Newton')
  97. self.assertTrue(m.logistic_floor)
  98. self.assertTrue('floor' in m.history)
  99. self.assertAlmostEqual(m.history['y_scaled'][0], 1.)
  100. fcst1 = m.predict(future)
  101. m2 = Prophet(growth='logistic')
  102. history2 = history.copy()
  103. history2['y'] += 10.
  104. history2['floor'] += 10.
  105. history2['cap'] += 10.
  106. future['cap'] += 10.
  107. future['floor'] += 10.
  108. m2.fit(history2, algorithm='Newton')
  109. self.assertAlmostEqual(m2.history['y_scaled'][0], 1.)
  110. fcst2 = m2.predict(future)
  111. fcst2['yhat'] -= 10.
  112. # Check for approximate shift invariance
  113. self.assertTrue((np.abs(fcst1['yhat'] - fcst2['yhat']) < 1).all())
  114. def test_get_changepoints(self):
  115. m = Prophet()
  116. N = DATA.shape[0]
  117. history = DATA.head(N // 2).copy()
  118. history = m.setup_dataframe(history, initialize_scales=True)
  119. m.history = history
  120. m.set_changepoints()
  121. cp = m.changepoints_t
  122. self.assertEqual(cp.shape[0], m.n_changepoints)
  123. self.assertEqual(len(cp.shape), 1)
  124. self.assertTrue(cp.min() > 0)
  125. cp_indx = int(np.ceil(0.8 * history.shape[0]))
  126. self.assertTrue(cp.max() <= history['t'].values[cp_indx])
  127. def test_set_changepoint_range(self):
  128. m = Prophet(changepoint_range=0.4)
  129. N = DATA.shape[0]
  130. history = DATA.head(N // 2).copy()
  131. history = m.setup_dataframe(history, initialize_scales=True)
  132. m.history = history
  133. m.set_changepoints()
  134. cp = m.changepoints_t
  135. self.assertEqual(cp.shape[0], m.n_changepoints)
  136. self.assertEqual(len(cp.shape), 1)
  137. self.assertTrue(cp.min() > 0)
  138. cp_indx = int(np.ceil(0.4 * history.shape[0]))
  139. self.assertTrue(cp.max() <= history['t'].values[cp_indx])
  140. with self.assertRaises(ValueError):
  141. m = Prophet(changepoint_range=-0.1)
  142. with self.assertRaises(ValueError):
  143. m = Prophet(changepoint_range=2)
  144. def test_get_zero_changepoints(self):
  145. m = Prophet(n_changepoints=0)
  146. N = DATA.shape[0]
  147. history = DATA.head(N // 2).copy()
  148. history = m.setup_dataframe(history, initialize_scales=True)
  149. m.history = history
  150. m.set_changepoints()
  151. cp = m.changepoints_t
  152. self.assertEqual(cp.shape[0], 1)
  153. self.assertEqual(cp[0], 0)
  154. def test_override_n_changepoints(self):
  155. m = Prophet()
  156. history = DATA.head(20).copy()
  157. history = m.setup_dataframe(history, initialize_scales=True)
  158. m.history = history
  159. m.set_changepoints()
  160. self.assertEqual(m.n_changepoints, 15)
  161. cp = m.changepoints_t
  162. self.assertEqual(cp.shape[0], 15)
  163. def test_fourier_series_weekly(self):
  164. mat = Prophet.fourier_series(DATA['ds'], 7, 3)
  165. # These are from the R forecast package directly.
  166. true_values = np.array([
  167. 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
  168. ])
  169. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  170. def test_fourier_series_yearly(self):
  171. mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
  172. # These are from the R forecast package directly.
  173. true_values = np.array([
  174. 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
  175. ])
  176. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  177. def test_growth_init(self):
  178. model = Prophet(growth='logistic')
  179. history = DATA.iloc[:468].copy()
  180. history['cap'] = history['y'].max()
  181. history = model.setup_dataframe(history, initialize_scales=True)
  182. k, m = model.linear_growth_init(history)
  183. self.assertAlmostEqual(k, 0.3055671)
  184. self.assertAlmostEqual(m, 0.5307511)
  185. k, m = model.logistic_growth_init(history)
  186. self.assertAlmostEqual(k, 1.507925, places=4)
  187. self.assertAlmostEqual(m, -0.08167497, places=4)
  188. def test_piecewise_linear(self):
  189. model = Prophet()
  190. t = np.arange(11.)
  191. m = 0
  192. k = 1.0
  193. deltas = np.array([0.5])
  194. changepoint_ts = np.array([5])
  195. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  196. y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
  197. 6.5, 8.0, 9.5, 11.0, 12.5])
  198. self.assertEqual((y - y_true).sum(), 0.0)
  199. t = t[8:]
  200. y_true = y_true[8:]
  201. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  202. self.assertEqual((y - y_true).sum(), 0.0)
  203. def test_piecewise_logistic(self):
  204. model = Prophet()
  205. t = np.arange(11.)
  206. cap = np.ones(11) * 10
  207. m = 0
  208. k = 1.0
  209. deltas = np.array([0.5])
  210. changepoint_ts = np.array([5])
  211. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  212. y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
  213. 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
  214. 9.999963])
  215. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  216. t = t[8:]
  217. y_true = y_true[8:]
  218. cap = cap[8:]
  219. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  220. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  221. def test_holidays(self):
  222. holidays = pd.DataFrame({
  223. 'ds': pd.to_datetime(['2016-12-25']),
  224. 'holiday': ['xmas'],
  225. 'lower_window': [-1],
  226. 'upper_window': [0],
  227. })
  228. model = Prophet(holidays=holidays)
  229. df = pd.DataFrame({
  230. 'ds': pd.date_range('2016-12-20', '2016-12-31')
  231. })
  232. feats, priors, names = model.make_holiday_features(df['ds'])
  233. # 11 columns generated even though only 8 overlap
  234. self.assertEqual(feats.shape, (df.shape[0], 2))
  235. self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
  236. self.assertEqual(priors, [10., 10.]) # Default prior
  237. self.assertEqual(names, ['xmas'])
  238. holidays = pd.DataFrame({
  239. 'ds': pd.to_datetime(['2016-12-25']),
  240. 'holiday': ['xmas'],
  241. 'lower_window': [-1],
  242. 'upper_window': [10],
  243. })
  244. m = Prophet(holidays=holidays)
  245. feats, priors, names = m.make_holiday_features(df['ds'])
  246. # 12 columns generated even though only 8 overlap
  247. self.assertEqual(feats.shape, (df.shape[0], 12))
  248. self.assertEqual(priors, list(10. * np.ones(12)))
  249. self.assertEqual(names, ['xmas'])
  250. # Check prior specifications
  251. holidays = pd.DataFrame({
  252. 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
  253. 'holiday': ['xmas', 'xmas'],
  254. 'lower_window': [-1, -1],
  255. 'upper_window': [0, 0],
  256. 'prior_scale': [5., 5.],
  257. })
  258. m = Prophet(holidays=holidays)
  259. feats, priors, names = m.make_holiday_features(df['ds'])
  260. self.assertEqual(priors, [5., 5.])
  261. self.assertEqual(names, ['xmas'])
  262. # 2 different priors
  263. holidays2 = pd.DataFrame({
  264. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  265. 'holiday': ['seans-bday'] * 2,
  266. 'lower_window': [0] * 2,
  267. 'upper_window': [1] * 2,
  268. 'prior_scale': [8] * 2,
  269. })
  270. holidays2 = pd.concat((holidays, holidays2))
  271. m = Prophet(holidays=holidays2)
  272. feats, priors, names = m.make_holiday_features(df['ds'])
  273. self.assertEqual(priors, [8., 8., 5., 5.])
  274. self.assertEqual(set(names), {'xmas', 'seans-bday'})
  275. holidays2 = pd.DataFrame({
  276. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  277. 'holiday': ['seans-bday'] * 2,
  278. 'lower_window': [0] * 2,
  279. 'upper_window': [1] * 2,
  280. })
  281. holidays2 = pd.concat((holidays, holidays2))
  282. feats, priors, names = Prophet(
  283. holidays=holidays2, holidays_prior_scale=4
  284. ).make_holiday_features(df['ds'])
  285. self.assertEqual(priors, [4., 4., 5., 5.])
  286. # Check incompatible priors
  287. holidays = pd.DataFrame({
  288. 'ds': pd.to_datetime(['2016-12-25', '2016-12-27']),
  289. 'holiday': ['xmasish', 'xmasish'],
  290. 'lower_window': [-1, -1],
  291. 'upper_window': [0, 0],
  292. 'prior_scale': [5., 6.],
  293. })
  294. with self.assertRaises(ValueError):
  295. Prophet(holidays=holidays).make_holiday_features(df['ds'])
  296. def test_fit_with_holidays(self):
  297. holidays = pd.DataFrame({
  298. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  299. 'holiday': ['seans-bday'] * 2,
  300. 'lower_window': [0] * 2,
  301. 'upper_window': [1] * 2,
  302. })
  303. model = Prophet(holidays=holidays, uncertainty_samples=0)
  304. model.fit(DATA).predict()
  305. def test_make_future_dataframe(self):
  306. N = 468
  307. train = DATA.head(N // 2)
  308. forecaster = Prophet()
  309. forecaster.fit(train)
  310. future = forecaster.make_future_dataframe(periods=3, freq='D',
  311. include_history=False)
  312. correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
  313. self.assertEqual(len(future), 3)
  314. for i in range(3):
  315. self.assertEqual(future.iloc[i]['ds'], correct[i])
  316. future = forecaster.make_future_dataframe(periods=3, freq='M',
  317. include_history=False)
  318. correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
  319. self.assertEqual(len(future), 3)
  320. for i in range(3):
  321. self.assertEqual(future.iloc[i]['ds'], correct[i])
  322. def test_auto_weekly_seasonality(self):
  323. # Should be enabled
  324. N = 15
  325. train = DATA.head(N)
  326. m = Prophet()
  327. self.assertEqual(m.weekly_seasonality, 'auto')
  328. m.fit(train)
  329. self.assertIn('weekly', m.seasonalities)
  330. self.assertEqual(
  331. m.seasonalities['weekly'],
  332. {
  333. 'period': 7,
  334. 'fourier_order': 3,
  335. 'prior_scale': 10.,
  336. 'mode': 'additive',
  337. },
  338. )
  339. # Should be disabled due to too short history
  340. N = 9
  341. train = DATA.head(N)
  342. m = Prophet()
  343. m.fit(train)
  344. self.assertNotIn('weekly', m.seasonalities)
  345. m = Prophet(weekly_seasonality=True)
  346. m.fit(train)
  347. self.assertIn('weekly', m.seasonalities)
  348. # Should be False due to weekly spacing
  349. train = DATA.iloc[::7, :]
  350. m = Prophet()
  351. m.fit(train)
  352. self.assertNotIn('weekly', m.seasonalities)
  353. m = Prophet(weekly_seasonality=2, seasonality_prior_scale=3.)
  354. m.fit(DATA)
  355. self.assertEqual(
  356. m.seasonalities['weekly'],
  357. {
  358. 'period': 7,
  359. 'fourier_order': 2,
  360. 'prior_scale': 3.,
  361. 'mode': 'additive',
  362. },
  363. )
  364. def test_auto_yearly_seasonality(self):
  365. # Should be enabled
  366. m = Prophet()
  367. self.assertEqual(m.yearly_seasonality, 'auto')
  368. m.fit(DATA)
  369. self.assertIn('yearly', m.seasonalities)
  370. self.assertEqual(
  371. m.seasonalities['yearly'],
  372. {
  373. 'period': 365.25,
  374. 'fourier_order': 10,
  375. 'prior_scale': 10.,
  376. 'mode': 'additive',
  377. },
  378. )
  379. # Should be disabled due to too short history
  380. N = 240
  381. train = DATA.head(N)
  382. m = Prophet()
  383. m.fit(train)
  384. self.assertNotIn('yearly', m.seasonalities)
  385. m = Prophet(yearly_seasonality=True)
  386. m.fit(train)
  387. self.assertIn('yearly', m.seasonalities)
  388. m = Prophet(yearly_seasonality=7, seasonality_prior_scale=3.)
  389. m.fit(DATA)
  390. self.assertEqual(
  391. m.seasonalities['yearly'],
  392. {
  393. 'period': 365.25,
  394. 'fourier_order': 7,
  395. 'prior_scale': 3.,
  396. 'mode': 'additive',
  397. },
  398. )
  399. def test_auto_daily_seasonality(self):
  400. # Should be enabled
  401. m = Prophet()
  402. self.assertEqual(m.daily_seasonality, 'auto')
  403. m.fit(DATA2)
  404. self.assertIn('daily', m.seasonalities)
  405. self.assertEqual(
  406. m.seasonalities['daily'],
  407. {
  408. 'period': 1,
  409. 'fourier_order': 4,
  410. 'prior_scale': 10.,
  411. 'mode': 'additive',
  412. },
  413. )
  414. # Should be disabled due to too short history
  415. N = 430
  416. train = DATA2.head(N)
  417. m = Prophet()
  418. m.fit(train)
  419. self.assertNotIn('daily', m.seasonalities)
  420. m = Prophet(daily_seasonality=True)
  421. m.fit(train)
  422. self.assertIn('daily', m.seasonalities)
  423. m = Prophet(daily_seasonality=7, seasonality_prior_scale=3.)
  424. m.fit(DATA2)
  425. self.assertEqual(
  426. m.seasonalities['daily'],
  427. {
  428. 'period': 1,
  429. 'fourier_order': 7,
  430. 'prior_scale': 3.,
  431. 'mode': 'additive',
  432. },
  433. )
  434. m = Prophet()
  435. m.fit(DATA)
  436. self.assertNotIn('daily', m.seasonalities)
  437. def test_subdaily_holidays(self):
  438. holidays = pd.DataFrame({
  439. 'ds': pd.to_datetime(['2017-01-02']),
  440. 'holiday': ['special_day'],
  441. })
  442. m = Prophet(holidays=holidays)
  443. m.fit(DATA2)
  444. fcst = m.predict()
  445. self.assertEqual(sum(fcst['special_day'] == 0), 575)
  446. def test_custom_seasonality(self):
  447. holidays = pd.DataFrame({
  448. 'ds': pd.to_datetime(['2017-01-02']),
  449. 'holiday': ['special_day'],
  450. 'prior_scale': [4.],
  451. })
  452. m = Prophet(holidays=holidays)
  453. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  454. prior_scale=2.)
  455. self.assertEqual(
  456. m.seasonalities['monthly'],
  457. {
  458. 'period': 30,
  459. 'fourier_order': 5,
  460. 'prior_scale': 2.,
  461. 'mode': 'additive',
  462. },
  463. )
  464. with self.assertRaises(ValueError):
  465. m.add_seasonality(name='special_day', period=30, fourier_order=5)
  466. with self.assertRaises(ValueError):
  467. m.add_seasonality(name='trend', period=30, fourier_order=5)
  468. m.add_seasonality(name='weekly', period=30, fourier_order=5)
  469. # Test priors
  470. m = Prophet(
  471. holidays=holidays, yearly_seasonality=False,
  472. seasonality_mode='multiplicative',
  473. )
  474. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  475. prior_scale=2., mode='additive')
  476. m.fit(DATA.copy())
  477. self.assertEqual(m.seasonalities['monthly']['mode'], 'additive')
  478. self.assertEqual(m.seasonalities['weekly']['mode'], 'multiplicative')
  479. seasonal_features, prior_scales, component_cols, modes = (
  480. m.make_all_seasonality_features(m.history)
  481. )
  482. self.assertEqual(sum(component_cols['monthly']), 10)
  483. self.assertEqual(sum(component_cols['special_day']), 1)
  484. self.assertEqual(sum(component_cols['weekly']), 6)
  485. self.assertEqual(sum(component_cols['additive_terms']), 10)
  486. self.assertEqual(sum(component_cols['multiplicative_terms']), 7)
  487. if seasonal_features.columns[0] == 'monthly_delim_1':
  488. true = [2.] * 10 + [10.] * 6 + [4.]
  489. self.assertEqual(sum(component_cols['monthly'][:10]), 10)
  490. self.assertEqual(sum(component_cols['weekly'][10:16]), 6)
  491. else:
  492. true = [10.] * 6 + [2.] * 10 + [4.]
  493. self.assertEqual(sum(component_cols['weekly'][:6]), 6)
  494. self.assertEqual(sum(component_cols['monthly'][6:16]), 10)
  495. self.assertEqual(prior_scales, true)
  496. def test_added_regressors(self):
  497. m = Prophet()
  498. m.add_regressor('binary_feature', prior_scale=0.2)
  499. m.add_regressor('numeric_feature', prior_scale=0.5)
  500. m.add_regressor(
  501. 'numeric_feature2', prior_scale=0.5, mode='multiplicative'
  502. )
  503. m.add_regressor('binary_feature2', standardize=True)
  504. df = DATA.copy()
  505. df['binary_feature'] = [0] * 255 + [1] * 255
  506. df['numeric_feature'] = range(510)
  507. df['numeric_feature2'] = range(510)
  508. with self.assertRaises(ValueError):
  509. # Require all regressors in df
  510. m.fit(df)
  511. df['binary_feature2'] = [1] * 100 + [0] * 410
  512. m.fit(df)
  513. # Check that standardizations are correctly set
  514. self.assertEqual(
  515. m.extra_regressors['binary_feature'],
  516. {
  517. 'prior_scale': 0.2,
  518. 'mu': 0,
  519. 'std': 1,
  520. 'standardize': 'auto',
  521. 'mode': 'additive',
  522. },
  523. )
  524. self.assertEqual(
  525. m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
  526. self.assertEqual(
  527. m.extra_regressors['numeric_feature']['mu'], 254.5)
  528. self.assertAlmostEqual(
  529. m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
  530. self.assertEqual(
  531. m.extra_regressors['numeric_feature2']['mode'], 'multiplicative')
  532. self.assertEqual(
  533. m.extra_regressors['binary_feature2']['prior_scale'], 10.)
  534. self.assertAlmostEqual(
  535. m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
  536. self.assertAlmostEqual(
  537. m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
  538. # Check that standardization is done correctly
  539. df2 = m.setup_dataframe(df.copy())
  540. self.assertEqual(df2['binary_feature'][0], 0)
  541. self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
  542. self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
  543. # Check that feature matrix and prior scales are correctly constructed
  544. seasonal_features, prior_scales, component_cols, modes = (
  545. m.make_all_seasonality_features(df2)
  546. )
  547. self.assertEqual(seasonal_features.shape[1], 30)
  548. names = ['binary_feature', 'numeric_feature', 'binary_feature2']
  549. true_priors = [0.2, 0.5, 10.]
  550. for i, name in enumerate(names):
  551. self.assertIn(name, seasonal_features)
  552. self.assertEqual(sum(component_cols[name]), 1)
  553. self.assertEqual(
  554. sum(np.array(prior_scales) * component_cols[name]),
  555. true_priors[i],
  556. )
  557. # Check that forecast components are reasonable
  558. future = pd.DataFrame({
  559. 'ds': ['2014-06-01'],
  560. 'binary_feature': [0],
  561. 'numeric_feature': [10],
  562. 'numeric_feature2': [10],
  563. })
  564. with self.assertRaises(ValueError):
  565. m.predict(future)
  566. future['binary_feature2'] = 0
  567. fcst = m.predict(future)
  568. self.assertEqual(fcst.shape[1], 37)
  569. self.assertEqual(fcst['binary_feature'][0], 0)
  570. self.assertAlmostEqual(
  571. fcst['extra_regressors_additive'][0],
  572. fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
  573. )
  574. self.assertAlmostEqual(
  575. fcst['extra_regressors_multiplicative'][0],
  576. fcst['numeric_feature2'][0],
  577. )
  578. self.assertAlmostEqual(
  579. fcst['additive_terms'][0],
  580. fcst['yearly'][0] + fcst['weekly'][0]
  581. + fcst['extra_regressors_additive'][0],
  582. )
  583. self.assertAlmostEqual(
  584. fcst['multiplicative_terms'][0],
  585. fcst['extra_regressors_multiplicative'][0],
  586. )
  587. self.assertAlmostEqual(
  588. fcst['yhat'][0],
  589. fcst['trend'][0] * (1 + fcst['multiplicative_terms'][0])
  590. + fcst['additive_terms'][0],
  591. )
  592. # Check works if constant extra regressor at 0
  593. df['constant_feature'] = 0
  594. m = Prophet()
  595. m.add_regressor('constant_feature')
  596. m.fit(df)
  597. self.assertEqual(m.extra_regressors['constant_feature']['std'], 1)
  598. def test_set_seasonality_mode(self):
  599. # Setting attribute
  600. m = Prophet()
  601. self.assertEqual(m.seasonality_mode, 'additive')
  602. m = Prophet(seasonality_mode='multiplicative')
  603. self.assertEqual(m.seasonality_mode, 'multiplicative')
  604. with self.assertRaises(ValueError):
  605. Prophet(seasonality_mode='batman')
  606. def test_seasonality_modes(self):
  607. # Model with holidays, seasonalities, and extra regressors
  608. holidays = pd.DataFrame({
  609. 'ds': pd.to_datetime(['2016-12-25']),
  610. 'holiday': ['xmas'],
  611. 'lower_window': [-1],
  612. 'upper_window': [0],
  613. })
  614. m = Prophet(seasonality_mode='multiplicative', holidays=holidays)
  615. m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3)
  616. m.add_regressor('binary_feature', mode='additive')
  617. m.add_regressor('numeric_feature')
  618. # Construct seasonal features
  619. df = DATA.copy()
  620. df['binary_feature'] = [0] * 255 + [1] * 255
  621. df['numeric_feature'] = range(510)
  622. df = m.setup_dataframe(df, initialize_scales=True)
  623. m.history = df.copy()
  624. m.set_auto_seasonalities()
  625. seasonal_features, prior_scales, component_cols, modes = (
  626. m.make_all_seasonality_features(df))
  627. self.assertEqual(sum(component_cols['additive_terms']), 7)
  628. self.assertEqual(sum(component_cols['multiplicative_terms']), 29)
  629. self.assertEqual(
  630. set(modes['additive']),
  631. {'monthly', 'binary_feature', 'additive_terms',
  632. 'extra_regressors_additive'},
  633. )
  634. self.assertEqual(
  635. set(modes['multiplicative']),
  636. {'weekly', 'yearly', 'xmas', 'numeric_feature',
  637. 'multiplicative_terms', 'extra_regressors_multiplicative',
  638. 'holidays',
  639. },
  640. )