123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807 |
- # Copyright (c) 2017-present, Facebook, Inc.
- # All rights reserved.
- #
- # This source code is licensed under the BSD-style license found in the
- # LICENSE file in the root directory of this source tree. An additional grant
- # of patent rights can be found in the PATENTS file in the same directory.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- try:
- from StringIO import StringIO
- except ImportError:
- from io import StringIO
- import numpy as np
- import pandas as pd
- # fb-block 1 start
- from unittest import TestCase
- from fbprophet import Prophet
- # fb-block 1 end
- # fb-block 2
- class TestProphet(TestCase):
- def test_fit_predict(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2)
- future = DATA.tail(N // 2)
- forecaster = Prophet()
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_no_seasons(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2)
- future = DATA.tail(N // 2)
- forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_no_changepoints(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2)
- future = DATA.tail(N // 2)
- forecaster = Prophet(n_changepoints=0)
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_changepoint_not_in_history(self):
- train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
- train[(train['ds'] > '2014-01-01')] += 20
- future = pd.DataFrame({'ds': DATA['ds']})
- forecaster = Prophet(changepoints=['2013-06-06'])
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_duplicates(self):
- N = DATA.shape[0]
- train1 = DATA.head(N // 2).copy()
- train2 = DATA.head(N // 2).copy()
- train2['y'] += 10
- train = train1.append(train2)
- future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
- forecaster = Prophet()
- forecaster.fit(train)
- forecaster.predict(future)
- def test_setup_dataframe(self):
- m = Prophet()
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- self.assertTrue('t' in history)
- self.assertEqual(history['t'].min(), 0.0)
- self.assertEqual(history['t'].max(), 1.0)
- self.assertTrue('y_scaled' in history)
- self.assertEqual(history['y_scaled'].max(), 1.0)
- def test_get_changepoints(self):
- m = Prophet()
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- m.history = history
- m.set_changepoints()
- cp = m.changepoints_t
- self.assertEqual(cp.shape[0], m.n_changepoints)
- self.assertEqual(len(cp.shape), 1)
- self.assertTrue(cp.min() > 0)
- self.assertTrue(cp.max() < N)
- mat = m.get_changepoint_matrix()
- self.assertEqual(mat.shape[0], N // 2)
- self.assertEqual(mat.shape[1], m.n_changepoints)
- def test_get_zero_changepoints(self):
- m = Prophet(n_changepoints=0)
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- m.history = history
- m.set_changepoints()
- cp = m.changepoints_t
- self.assertEqual(cp.shape[0], 1)
- self.assertEqual(cp[0], 0)
- mat = m.get_changepoint_matrix()
- self.assertEqual(mat.shape[0], N // 2)
- self.assertEqual(mat.shape[1], 1)
- def test_fourier_series_weekly(self):
- mat = Prophet.fourier_series(DATA['ds'], 7, 3)
- # These are from the R forecast package directly.
- true_values = np.array([
- 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
- ])
- self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
- def test_fourier_series_yearly(self):
- mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
- # These are from the R forecast package directly.
- true_values = np.array([
- 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
- ])
- self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
- def test_growth_init(self):
- model = Prophet(growth='logistic')
- history = DATA.iloc[:468].copy()
- history['cap'] = history['y'].max()
- history = model.setup_dataframe(history, initialize_scales=True)
- k, m = model.linear_growth_init(history)
- self.assertAlmostEqual(k, 0.3055671)
- self.assertAlmostEqual(m, 0.5307511)
- k, m = model.logistic_growth_init(history)
- self.assertAlmostEqual(k, 1.507925, places=4)
- self.assertAlmostEqual(m, -0.08167497, places=4)
- def test_piecewise_linear(self):
- model = Prophet()
- t = np.arange(11.)
- m = 0
- k = 1.0
- deltas = np.array([0.5])
- changepoint_ts = np.array([5])
- y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
- y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
- 6.5, 8.0, 9.5, 11.0, 12.5])
- self.assertEqual((y - y_true).sum(), 0.0)
- t = t[8:]
- y_true = y_true[8:]
- y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
- self.assertEqual((y - y_true).sum(), 0.0)
- def test_piecewise_logistic(self):
- model = Prophet()
- t = np.arange(11.)
- cap = np.ones(11) * 10
- m = 0
- k = 1.0
- deltas = np.array([0.5])
- changepoint_ts = np.array([5])
- y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
- y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
- 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
- 9.999963])
- self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
- t = t[8:]
- y_true = y_true[8:]
- cap = cap[8:]
- y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
- self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
- def test_holidays(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2016-12-25']),
- 'holiday': ['xmas'],
- 'lower_window': [-1],
- 'upper_window': [0],
- })
- model = Prophet(holidays=holidays)
- df = pd.DataFrame({
- 'ds': pd.date_range('2016-12-20', '2016-12-31')
- })
- feats = model.make_holiday_features(df['ds'])
- # 11 columns generated even though only 8 overlap
- self.assertEqual(feats.shape, (df.shape[0], 2))
- self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2016-12-25']),
- 'holiday': ['xmas'],
- 'lower_window': [-1],
- 'upper_window': [10],
- })
- feats = Prophet(holidays=holidays).make_holiday_features(df['ds'])
- # 12 columns generated even though only 8 overlap
- self.assertEqual(feats.shape, (df.shape[0], 12))
- def test_fit_with_holidays(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
- 'holiday': ['seans-bday'] * 2,
- 'lower_window': [0] * 2,
- 'upper_window': [1] * 2,
- })
- model = Prophet(holidays=holidays, uncertainty_samples=0)
- model.fit(DATA).predict()
- def test_make_future_dataframe(self):
- N = 468
- train = DATA.head(N // 2)
- forecaster = Prophet()
- forecaster.fit(train)
- future = forecaster.make_future_dataframe(periods=3, freq='D',
- include_history=False)
- correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
- self.assertEqual(len(future), 3)
- for i in range(3):
- self.assertEqual(future.iloc[i]['ds'], correct[i])
- future = forecaster.make_future_dataframe(periods=3, freq='M',
- include_history=False)
- correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
- self.assertEqual(len(future), 3)
- for i in range(3):
- self.assertEqual(future.iloc[i]['ds'], correct[i])
- def test_auto_weekly_seasonality(self):
- # Should be True
- N = 15
- train = DATA.head(N)
- m = Prophet()
- self.assertEqual(m.weekly_seasonality, 'auto')
- m.fit(train)
- self.assertEqual(m.weekly_seasonality, True)
- # Should be False due to too short history
- N = 9
- train = DATA.head(N)
- m = Prophet()
- m.fit(train)
- self.assertEqual(m.weekly_seasonality, False)
- m = Prophet(weekly_seasonality=True)
- m.fit(train)
- self.assertEqual(m.weekly_seasonality, True)
- # Should be False due to weekly spacing
- train = DATA.iloc[::7, :]
- m = Prophet()
- m.fit(train)
- self.assertEqual(m.weekly_seasonality, False)
- def test_auto_yearly_seasonality(self):
- # Should be True
- m = Prophet()
- self.assertEqual(m.yearly_seasonality, 'auto')
- m.fit(DATA)
- self.assertEqual(m.yearly_seasonality, True)
- # Should be False due to too short history
- N = 240
- train = DATA.head(N)
- m = Prophet()
- m.fit(train)
- self.assertEqual(m.yearly_seasonality, False)
- m = Prophet(yearly_seasonality=True)
- m.fit(train)
- self.assertEqual(m.yearly_seasonality, True)
- DATA = pd.read_csv(StringIO("""
- ds,y
- 2012-05-18,38.23
- 2012-05-21,34.03
- 2012-05-22,31.0
- 2012-05-23,32.0
- 2012-05-24,33.03
- 2012-05-25,31.91
- 2012-05-29,28.84
- 2012-05-30,28.19
- 2012-05-31,29.6
- 2012-06-01,27.72
- 2012-06-04,26.9
- 2012-06-05,25.87
- 2012-06-06,26.81
- 2012-06-07,26.31
- 2012-06-08,27.1
- 2012-06-11,27.01
- 2012-06-12,27.4
- 2012-06-13,27.27
- 2012-06-14,28.29
- 2012-06-15,30.01
- 2012-06-18,31.41
- 2012-06-19,31.91
- 2012-06-20,31.6
- 2012-06-21,31.84
- 2012-06-22,33.05
- 2012-06-25,32.06
- 2012-06-26,33.1
- 2012-06-27,32.23
- 2012-06-28,31.36
- 2012-06-29,31.1
- 2012-07-02,30.77
- 2012-07-03,31.2
- 2012-07-05,31.47
- 2012-07-06,31.73
- 2012-07-09,32.17
- 2012-07-10,31.47
- 2012-07-11,30.97
- 2012-07-12,30.81
- 2012-07-13,30.72
- 2012-07-16,28.25
- 2012-07-17,28.09
- 2012-07-18,29.11
- 2012-07-19,29.0
- 2012-07-20,28.76
- 2012-07-23,28.75
- 2012-07-24,28.45
- 2012-07-25,29.34
- 2012-07-26,26.85
- 2012-07-27,23.71
- 2012-07-30,23.15
- 2012-07-31,21.71
- 2012-08-01,20.88
- 2012-08-02,20.04
- 2012-08-03,21.09
- 2012-08-06,21.92
- 2012-08-07,20.72
- 2012-08-08,20.72
- 2012-08-09,21.01
- 2012-08-10,21.81
- 2012-08-13,21.6
- 2012-08-14,20.38
- 2012-08-15,21.2
- 2012-08-16,19.87
- 2012-08-17,19.05
- 2012-08-20,20.01
- 2012-08-21,19.16
- 2012-08-22,19.44
- 2012-08-23,19.44
- 2012-08-24,19.41
- 2012-08-27,19.15
- 2012-08-28,19.34
- 2012-08-29,19.1
- 2012-08-30,19.09
- 2012-08-31,18.06
- 2012-09-04,17.73
- 2012-09-05,18.58
- 2012-09-06,18.96
- 2012-09-07,18.98
- 2012-09-10,18.81
- 2012-09-11,19.43
- 2012-09-12,20.93
- 2012-09-13,20.71
- 2012-09-14,22.0
- 2012-09-17,21.52
- 2012-09-18,21.87
- 2012-09-19,23.29
- 2012-09-20,22.59
- 2012-09-21,22.86
- 2012-09-24,20.79
- 2012-09-25,20.28
- 2012-09-26,20.62
- 2012-09-27,20.32
- 2012-09-28,21.66
- 2012-10-01,21.99
- 2012-10-02,22.27
- 2012-10-03,21.83
- 2012-10-04,21.95
- 2012-10-05,20.91
- 2012-10-08,20.4
- 2012-10-09,20.23
- 2012-10-10,19.64
- 2012-10-11,19.75
- 2012-10-12,19.52
- 2012-10-15,19.52
- 2012-10-16,19.48
- 2012-10-17,19.88
- 2012-10-18,18.98
- 2012-10-19,19.0
- 2012-10-22,19.32
- 2012-10-23,19.5
- 2012-10-24,23.23
- 2012-10-25,22.56
- 2012-10-26,21.94
- 2012-10-31,21.11
- 2012-11-01,21.21
- 2012-11-02,21.18
- 2012-11-05,21.25
- 2012-11-06,21.17
- 2012-11-07,20.47
- 2012-11-08,19.99
- 2012-11-09,19.21
- 2012-11-12,20.07
- 2012-11-13,19.86
- 2012-11-14,22.36
- 2012-11-15,22.17
- 2012-11-16,23.56
- 2012-11-19,22.92
- 2012-11-20,23.1
- 2012-11-21,24.32
- 2012-11-23,24.0
- 2012-11-26,25.94
- 2012-11-27,26.15
- 2012-11-28,26.36
- 2012-11-29,27.32
- 2012-11-30,28.0
- 2012-12-03,27.04
- 2012-12-04,27.46
- 2012-12-05,27.71
- 2012-12-06,26.97
- 2012-12-07,27.49
- 2012-12-10,27.84
- 2012-12-11,27.98
- 2012-12-12,27.58
- 2012-12-13,28.24
- 2012-12-14,26.81
- 2012-12-17,26.75
- 2012-12-18,27.71
- 2012-12-19,27.41
- 2012-12-20,27.36
- 2012-12-21,26.26
- 2012-12-24,26.93
- 2012-12-26,26.51
- 2012-12-27,26.05
- 2012-12-28,25.91
- 2012-12-31,26.62
- 2013-01-02,28.0
- 2013-01-03,27.77
- 2013-01-04,28.76
- 2013-01-07,29.42
- 2013-01-08,29.06
- 2013-01-09,30.59
- 2013-01-10,31.3
- 2013-01-11,31.72
- 2013-01-14,30.95
- 2013-01-15,30.1
- 2013-01-16,29.85
- 2013-01-17,30.14
- 2013-01-18,29.66
- 2013-01-22,30.73
- 2013-01-23,30.82
- 2013-01-24,31.08
- 2013-01-25,31.54
- 2013-01-28,32.47
- 2013-01-29,30.79
- 2013-01-30,31.24
- 2013-01-31,30.98
- 2013-02-01,29.73
- 2013-02-04,28.11
- 2013-02-05,28.64
- 2013-02-06,29.05
- 2013-02-07,28.65
- 2013-02-08,28.55
- 2013-02-11,28.26
- 2013-02-12,27.37
- 2013-02-13,27.91
- 2013-02-14,28.5
- 2013-02-15,28.32
- 2013-02-19,28.93
- 2013-02-20,28.46
- 2013-02-21,27.28
- 2013-02-22,27.13
- 2013-02-25,27.27
- 2013-02-26,27.39
- 2013-02-27,26.87
- 2013-02-28,27.25
- 2013-03-01,27.78
- 2013-03-04,27.72
- 2013-03-05,27.52
- 2013-03-06,27.45
- 2013-03-07,28.58
- 2013-03-08,27.96
- 2013-03-11,28.14
- 2013-03-12,27.83
- 2013-03-13,27.08
- 2013-03-14,27.04
- 2013-03-15,26.65
- 2013-03-18,26.49
- 2013-03-19,26.55
- 2013-03-20,25.86
- 2013-03-21,25.74
- 2013-03-22,25.73
- 2013-03-25,25.13
- 2013-03-26,25.21
- 2013-03-27,26.09
- 2013-03-28,25.58
- 2013-04-01,25.53
- 2013-04-02,25.42
- 2013-04-03,26.25
- 2013-04-04,27.07
- 2013-04-05,27.39
- 2013-04-08,26.85
- 2013-04-09,26.59
- 2013-04-10,27.57
- 2013-04-11,28.02
- 2013-04-12,27.4
- 2013-04-15,26.52
- 2013-04-16,26.92
- 2013-04-17,26.63
- 2013-04-18,25.69
- 2013-04-19,25.73
- 2013-04-22,25.97
- 2013-04-23,25.98
- 2013-04-24,26.11
- 2013-04-25,26.14
- 2013-04-26,26.85
- 2013-04-29,26.98
- 2013-04-30,27.77
- 2013-05-01,27.43
- 2013-05-02,28.97
- 2013-05-03,28.31
- 2013-05-06,27.57
- 2013-05-07,26.89
- 2013-05-08,27.12
- 2013-05-09,27.04
- 2013-05-10,26.68
- 2013-05-13,26.82
- 2013-05-14,27.07
- 2013-05-15,26.6
- 2013-05-16,26.13
- 2013-05-17,26.25
- 2013-05-20,25.76
- 2013-05-21,25.66
- 2013-05-22,25.16
- 2013-05-23,25.06
- 2013-05-24,24.31
- 2013-05-28,24.1
- 2013-05-29,23.32
- 2013-05-30,24.55
- 2013-05-31,24.35
- 2013-06-03,23.85
- 2013-06-04,23.52
- 2013-06-05,22.9
- 2013-06-06,22.97
- 2013-06-07,23.29
- 2013-06-10,24.33
- 2013-06-11,24.03
- 2013-06-12,23.77
- 2013-06-13,23.73
- 2013-06-14,23.63
- 2013-06-17,24.02
- 2013-06-18,24.21
- 2013-06-19,24.31
- 2013-06-20,23.9
- 2013-06-21,24.53
- 2013-06-24,23.94
- 2013-06-25,24.25
- 2013-06-26,24.16
- 2013-06-27,24.66
- 2013-06-28,24.88
- 2013-07-01,24.81
- 2013-07-02,24.41
- 2013-07-03,24.52
- 2013-07-05,24.37
- 2013-07-08,24.71
- 2013-07-09,25.48
- 2013-07-10,25.8
- 2013-07-11,25.81
- 2013-07-12,25.91
- 2013-07-15,26.28
- 2013-07-16,26.32
- 2013-07-17,26.65
- 2013-07-18,26.18
- 2013-07-19,25.88
- 2013-07-22,26.05
- 2013-07-23,26.13
- 2013-07-24,26.51
- 2013-07-25,34.36
- 2013-07-26,34.01
- 2013-07-29,35.43
- 2013-07-30,37.63
- 2013-07-31,36.8
- 2013-08-01,37.49
- 2013-08-02,38.05
- 2013-08-05,39.19
- 2013-08-06,38.55
- 2013-08-07,38.87
- 2013-08-08,38.54
- 2013-08-09,38.5
- 2013-08-12,38.22
- 2013-08-13,37.02
- 2013-08-14,36.65
- 2013-08-15,36.56
- 2013-08-16,37.08
- 2013-08-19,37.81
- 2013-08-20,38.41
- 2013-08-21,38.32
- 2013-08-22,38.55
- 2013-08-23,40.55
- 2013-08-26,41.34
- 2013-08-27,39.64
- 2013-08-28,40.55
- 2013-08-29,41.28
- 2013-08-30,41.29
- 2013-09-03,41.87
- 2013-09-04,41.78
- 2013-09-05,42.66
- 2013-09-06,43.95
- 2013-09-09,44.04
- 2013-09-10,43.6
- 2013-09-11,45.04
- 2013-09-12,44.75
- 2013-09-13,44.31
- 2013-09-16,42.51
- 2013-09-17,45.07
- 2013-09-18,45.23
- 2013-09-19,45.98
- 2013-09-20,47.49
- 2013-09-23,47.19
- 2013-09-24,48.45
- 2013-09-25,49.46
- 2013-09-26,50.39
- 2013-09-27,51.24
- 2013-09-30,50.23
- 2013-10-01,50.42
- 2013-10-02,50.28
- 2013-10-03,49.18
- 2013-10-04,51.04
- 2013-10-07,50.52
- 2013-10-08,47.14
- 2013-10-09,46.77
- 2013-10-10,49.05
- 2013-10-11,49.11
- 2013-10-14,49.51
- 2013-10-15,49.5
- 2013-10-16,51.14
- 2013-10-17,52.21
- 2013-10-18,54.22
- 2013-10-21,53.85
- 2013-10-22,52.68
- 2013-10-23,51.9
- 2013-10-24,52.45
- 2013-10-25,51.95
- 2013-10-28,50.23
- 2013-10-29,49.4
- 2013-10-30,49.01
- 2013-10-31,50.21
- 2013-11-01,49.75
- 2013-11-04,48.22
- 2013-11-05,50.11
- 2013-11-06,49.12
- 2013-11-07,47.56
- 2013-11-08,47.53
- 2013-11-11,46.2
- 2013-11-12,46.61
- 2013-11-13,48.71
- 2013-11-14,48.99
- 2013-11-15,49.01
- 2013-11-18,45.83
- 2013-11-19,46.36
- 2013-11-20,46.43
- 2013-11-21,46.7
- 2013-11-22,46.23
- 2013-11-25,44.82
- 2013-11-26,45.89
- 2013-11-27,46.49
- 2013-11-29,47.01
- 2013-12-02,47.06
- 2013-12-03,46.73
- 2013-12-04,48.62
- 2013-12-05,48.34
- 2013-12-06,47.94
- 2013-12-09,48.84
- 2013-12-10,50.25
- 2013-12-11,49.38
- 2013-12-12,51.83
- 2013-12-13,53.32
- 2013-12-16,53.81
- 2013-12-17,54.86
- 2013-12-18,55.57
- 2013-12-19,55.05
- 2013-12-20,55.12
- 2013-12-23,57.77
- 2013-12-24,57.96
- 2013-12-26,57.73
- 2013-12-27,55.44
- 2013-12-30,53.71
- 2013-12-31,54.65
- 2014-01-02,54.71
- 2014-01-03,54.56
- 2014-01-06,57.2
- 2014-01-07,57.92
- 2014-01-08,58.23
- 2014-01-09,57.22
- 2014-01-10,57.94
- 2014-01-13,55.91
- 2014-01-14,57.74
- 2014-01-15,57.6
- 2014-01-16,57.19
- 2014-01-17,56.3
- 2014-01-21,58.51
- 2014-01-22,57.51
- 2014-01-23,56.63
- 2014-01-24,54.45
- 2014-01-27,53.55
- 2014-01-28,55.14
- 2014-01-29,53.53
- 2014-01-30,61.08
- 2014-01-31,62.57
- 2014-02-03,61.48
- 2014-02-04,62.75
- 2014-02-05,62.19
- 2014-02-06,62.16
- 2014-02-07,64.32
- 2014-02-10,63.55
- 2014-02-11,64.85
- 2014-02-12,64.45
- 2014-02-13,67.33
- 2014-02-14,67.09
- 2014-02-18,67.3
- 2014-02-19,68.06
- 2014-02-20,69.63
- 2014-02-21,68.59
- 2014-02-24,70.78
- 2014-02-25,69.85
- 2014-02-26,69.26
- 2014-02-27,68.94
- 2014-02-28,68.46
- 2014-03-03,67.41
- 2014-03-04,68.8
- 2014-03-05,71.57
- 2014-03-06,70.84
- 2014-03-07,69.8
- 2014-03-10,72.03
- 2014-03-11,70.1
- 2014-03-12,70.88
- 2014-03-13,68.83
- 2014-03-14,67.72
- 2014-03-17,68.74
- 2014-03-18,69.19
- 2014-03-19,68.24
- 2014-03-20,66.97
- 2014-03-21,67.24
- 2014-03-24,64.1
- 2014-03-25,64.89
- 2014-03-26,60.39
- 2014-03-27,60.97
- 2014-03-28,60.01
- 2014-03-31,60.24
- 2014-04-01,62.62
- 2014-04-02,62.72
- 2014-04-03,59.49
- 2014-04-04,56.75
- 2014-04-07,56.95
- 2014-04-08,58.19
- 2014-04-09,62.41
- 2014-04-10,59.16
- 2014-04-11,58.53
- 2014-04-14,58.89
- 2014-04-15,59.09
- 2014-04-16,59.72
- 2014-04-17,58.94
- 2014-04-21,61.24
- 2014-04-22,63.03
- 2014-04-23,61.36
- 2014-04-24,60.87
- 2014-04-25,57.71
- 2014-04-28,56.14
- 2014-04-29,58.15
- 2014-04-30,59.78
- 2014-05-01,61.15
- 2014-05-02,60.46
- 2014-05-05,61.22
- 2014-05-06,58.53
- 2014-05-07,57.39
- 2014-05-08,56.76
- 2014-05-09,57.24
- 2014-05-12,59.83
- 2014-05-13,59.83
- 2014-05-14,59.23
- 2014-05-15,57.92
- 2014-05-16,58.02
- 2014-05-19,59.21
- 2014-05-20,58.56
- 2014-05-21,60.49
- 2014-05-22,60.52
- 2014-05-23,61.35
- 2014-05-27,63.48
- 2014-05-28,63.51
- 2014-05-29,63.83
- 2014-05-30,63.30
- """), parse_dates=['ds'])
|