test_prophet.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707
  1. # Copyright (c) 2017-present, Facebook, Inc.
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the BSD-style license found in the
  5. # LICENSE file in the root directory of this source tree. An additional grant
  6. # of patent rights can be found in the PATENTS file in the same directory.
  7. from __future__ import absolute_import
  8. from __future__ import division
  9. from __future__ import print_function
  10. from __future__ import unicode_literals
  11. import numpy as np
  12. import pandas as pd
  13. # fb-block 1 start
  14. import os
  15. from unittest import TestCase
  16. from fbprophet import Prophet
  17. DATA = pd.read_csv(
  18. os.path.join(os.path.dirname(__file__), 'data.csv'),
  19. parse_dates=['ds'],
  20. )
  21. DATA2 = pd.read_csv(
  22. os.path.join(os.path.dirname(__file__), 'data2.csv'),
  23. parse_dates=['ds'],
  24. )
  25. # fb-block 1 end
  26. # fb-block 2
  27. class TestProphet(TestCase):
  28. def test_fit_predict(self):
  29. N = DATA.shape[0]
  30. train = DATA.head(N // 2)
  31. future = DATA.tail(N // 2)
  32. forecaster = Prophet()
  33. forecaster.fit(train)
  34. forecaster.predict(future)
  35. def test_fit_predict_no_seasons(self):
  36. N = DATA.shape[0]
  37. train = DATA.head(N // 2)
  38. future = DATA.tail(N // 2)
  39. forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
  40. forecaster.fit(train)
  41. forecaster.predict(future)
  42. def test_fit_predict_no_changepoints(self):
  43. N = DATA.shape[0]
  44. train = DATA.head(N // 2)
  45. future = DATA.tail(N // 2)
  46. forecaster = Prophet(n_changepoints=0)
  47. forecaster.fit(train)
  48. forecaster.predict(future)
  49. def test_fit_changepoint_not_in_history(self):
  50. train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
  51. future = pd.DataFrame({'ds': DATA['ds']})
  52. forecaster = Prophet(changepoints=['2013-06-06'])
  53. forecaster.fit(train)
  54. forecaster.predict(future)
  55. def test_fit_predict_duplicates(self):
  56. N = DATA.shape[0]
  57. train1 = DATA.head(N // 2).copy()
  58. train2 = DATA.head(N // 2).copy()
  59. train2['y'] += 10
  60. train = train1.append(train2)
  61. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  62. forecaster = Prophet()
  63. forecaster.fit(train)
  64. forecaster.predict(future)
  65. def test_fit_predict_constant_history(self):
  66. N = DATA.shape[0]
  67. train = DATA.head(N // 2).copy()
  68. train['y'] = 20
  69. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  70. m = Prophet()
  71. m.fit(train)
  72. fcst = m.predict(future)
  73. self.assertEqual(fcst['yhat'].values[-1], 20)
  74. train['y'] = 0
  75. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  76. m = Prophet()
  77. m.fit(train)
  78. fcst = m.predict(future)
  79. self.assertEqual(fcst['yhat'].values[-1], 0)
  80. def test_setup_dataframe(self):
  81. m = Prophet()
  82. N = DATA.shape[0]
  83. history = DATA.head(N // 2).copy()
  84. history = m.setup_dataframe(history, initialize_scales=True)
  85. self.assertTrue('t' in history)
  86. self.assertEqual(history['t'].min(), 0.0)
  87. self.assertEqual(history['t'].max(), 1.0)
  88. self.assertTrue('y_scaled' in history)
  89. self.assertEqual(history['y_scaled'].max(), 1.0)
  90. def test_logistic_floor(self):
  91. m = Prophet(growth='logistic')
  92. N = DATA.shape[0]
  93. history = DATA.head(N // 2).copy()
  94. history['floor'] = 10.
  95. history['cap'] = 80.
  96. future = DATA.tail(N // 2).copy()
  97. future['cap'] = 80.
  98. future['floor'] = 10.
  99. m.fit(history, algorithm='Newton')
  100. self.assertTrue(m.logistic_floor)
  101. self.assertTrue('floor' in m.history)
  102. self.assertAlmostEqual(m.history['y_scaled'][0], 1.)
  103. fcst1 = m.predict(future)
  104. m2 = Prophet(growth='logistic')
  105. history2 = history.copy()
  106. history2['y'] += 10.
  107. history2['floor'] += 10.
  108. history2['cap'] += 10.
  109. future['cap'] += 10.
  110. future['floor'] += 10.
  111. m2.fit(history2, algorithm='Newton')
  112. self.assertAlmostEqual(m2.history['y_scaled'][0], 1.)
  113. fcst2 = m2.predict(future)
  114. fcst2['yhat'] -= 10.
  115. # Check for approximate shift invariance
  116. self.assertTrue((np.abs(fcst1['yhat'] - fcst2['yhat']) < 1).all())
  117. def test_get_changepoints(self):
  118. m = Prophet()
  119. N = DATA.shape[0]
  120. history = DATA.head(N // 2).copy()
  121. history = m.setup_dataframe(history, initialize_scales=True)
  122. m.history = history
  123. m.set_changepoints()
  124. cp = m.changepoints_t
  125. self.assertEqual(cp.shape[0], m.n_changepoints)
  126. self.assertEqual(len(cp.shape), 1)
  127. self.assertTrue(cp.min() > 0)
  128. cp_indx = int(np.ceil(0.8 * history.shape[0]))
  129. self.assertTrue(cp.max() <= history['t'].values[cp_indx])
  130. def test_set_changepoint_range(self):
  131. m = Prophet(changepoint_range=0.4)
  132. N = DATA.shape[0]
  133. history = DATA.head(N // 2).copy()
  134. history = m.setup_dataframe(history, initialize_scales=True)
  135. m.history = history
  136. m.set_changepoints()
  137. cp = m.changepoints_t
  138. self.assertEqual(cp.shape[0], m.n_changepoints)
  139. self.assertEqual(len(cp.shape), 1)
  140. self.assertTrue(cp.min() > 0)
  141. cp_indx = int(np.ceil(0.4 * history.shape[0]))
  142. self.assertTrue(cp.max() <= history['t'].values[cp_indx])
  143. with self.assertRaises(ValueError):
  144. m = Prophet(changepoint_range=-0.1)
  145. with self.assertRaises(ValueError):
  146. m = Prophet(changepoint_range=2)
  147. def test_get_zero_changepoints(self):
  148. m = Prophet(n_changepoints=0)
  149. N = DATA.shape[0]
  150. history = DATA.head(N // 2).copy()
  151. history = m.setup_dataframe(history, initialize_scales=True)
  152. m.history = history
  153. m.set_changepoints()
  154. cp = m.changepoints_t
  155. self.assertEqual(cp.shape[0], 1)
  156. self.assertEqual(cp[0], 0)
  157. def test_override_n_changepoints(self):
  158. m = Prophet()
  159. history = DATA.head(20).copy()
  160. history = m.setup_dataframe(history, initialize_scales=True)
  161. m.history = history
  162. m.set_changepoints()
  163. self.assertEqual(m.n_changepoints, 15)
  164. cp = m.changepoints_t
  165. self.assertEqual(cp.shape[0], 15)
  166. def test_fourier_series_weekly(self):
  167. mat = Prophet.fourier_series(DATA['ds'], 7, 3)
  168. # These are from the R forecast package directly.
  169. true_values = np.array([
  170. 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
  171. ])
  172. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  173. def test_fourier_series_yearly(self):
  174. mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
  175. # These are from the R forecast package directly.
  176. true_values = np.array([
  177. 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
  178. ])
  179. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  180. def test_growth_init(self):
  181. model = Prophet(growth='logistic')
  182. history = DATA.iloc[:468].copy()
  183. history['cap'] = history['y'].max()
  184. history = model.setup_dataframe(history, initialize_scales=True)
  185. k, m = model.linear_growth_init(history)
  186. self.assertAlmostEqual(k, 0.3055671)
  187. self.assertAlmostEqual(m, 0.5307511)
  188. k, m = model.logistic_growth_init(history)
  189. self.assertAlmostEqual(k, 1.507925, places=4)
  190. self.assertAlmostEqual(m, -0.08167497, places=4)
  191. def test_piecewise_linear(self):
  192. model = Prophet()
  193. t = np.arange(11.)
  194. m = 0
  195. k = 1.0
  196. deltas = np.array([0.5])
  197. changepoint_ts = np.array([5])
  198. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  199. y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
  200. 6.5, 8.0, 9.5, 11.0, 12.5])
  201. self.assertEqual((y - y_true).sum(), 0.0)
  202. t = t[8:]
  203. y_true = y_true[8:]
  204. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  205. self.assertEqual((y - y_true).sum(), 0.0)
  206. def test_piecewise_logistic(self):
  207. model = Prophet()
  208. t = np.arange(11.)
  209. cap = np.ones(11) * 10
  210. m = 0
  211. k = 1.0
  212. deltas = np.array([0.5])
  213. changepoint_ts = np.array([5])
  214. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  215. y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
  216. 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
  217. 9.999963])
  218. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  219. t = t[8:]
  220. y_true = y_true[8:]
  221. cap = cap[8:]
  222. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  223. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  224. def test_holidays(self):
  225. holidays = pd.DataFrame({
  226. 'ds': pd.to_datetime(['2016-12-25']),
  227. 'holiday': ['xmas'],
  228. 'lower_window': [-1],
  229. 'upper_window': [0],
  230. })
  231. model = Prophet(holidays=holidays)
  232. df = pd.DataFrame({
  233. 'ds': pd.date_range('2016-12-20', '2016-12-31')
  234. })
  235. feats, priors, names = model.make_holiday_features(df['ds'])
  236. # 11 columns generated even though only 8 overlap
  237. self.assertEqual(feats.shape, (df.shape[0], 2))
  238. self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
  239. self.assertEqual(priors, [10., 10.]) # Default prior
  240. self.assertEqual(names, ['xmas'])
  241. holidays = pd.DataFrame({
  242. 'ds': pd.to_datetime(['2016-12-25']),
  243. 'holiday': ['xmas'],
  244. 'lower_window': [-1],
  245. 'upper_window': [10],
  246. })
  247. m = Prophet(holidays=holidays)
  248. feats, priors, names = m.make_holiday_features(df['ds'])
  249. # 12 columns generated even though only 8 overlap
  250. self.assertEqual(feats.shape, (df.shape[0], 12))
  251. self.assertEqual(priors, list(10. * np.ones(12)))
  252. self.assertEqual(names, ['xmas'])
  253. # Check prior specifications
  254. holidays = pd.DataFrame({
  255. 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
  256. 'holiday': ['xmas', 'xmas'],
  257. 'lower_window': [-1, -1],
  258. 'upper_window': [0, 0],
  259. 'prior_scale': [5., 5.],
  260. })
  261. m = Prophet(holidays=holidays)
  262. feats, priors, names = m.make_holiday_features(df['ds'])
  263. self.assertEqual(priors, [5., 5.])
  264. self.assertEqual(names, ['xmas'])
  265. # 2 different priors
  266. holidays2 = pd.DataFrame({
  267. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  268. 'holiday': ['seans-bday'] * 2,
  269. 'lower_window': [0] * 2,
  270. 'upper_window': [1] * 2,
  271. 'prior_scale': [8] * 2,
  272. })
  273. holidays2 = pd.concat((holidays, holidays2))
  274. m = Prophet(holidays=holidays2)
  275. feats, priors, names = m.make_holiday_features(df['ds'])
  276. self.assertEqual(priors, [8., 8., 5., 5.])
  277. self.assertEqual(set(names), {'xmas', 'seans-bday'})
  278. holidays2 = pd.DataFrame({
  279. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  280. 'holiday': ['seans-bday'] * 2,
  281. 'lower_window': [0] * 2,
  282. 'upper_window': [1] * 2,
  283. })
  284. holidays2 = pd.concat((holidays, holidays2))
  285. feats, priors, names = Prophet(
  286. holidays=holidays2, holidays_prior_scale=4
  287. ).make_holiday_features(df['ds'])
  288. self.assertEqual(priors, [4., 4., 5., 5.])
  289. # Check incompatible priors
  290. holidays = pd.DataFrame({
  291. 'ds': pd.to_datetime(['2016-12-25', '2016-12-27']),
  292. 'holiday': ['xmasish', 'xmasish'],
  293. 'lower_window': [-1, -1],
  294. 'upper_window': [0, 0],
  295. 'prior_scale': [5., 6.],
  296. })
  297. with self.assertRaises(ValueError):
  298. Prophet(holidays=holidays).make_holiday_features(df['ds'])
  299. def test_fit_with_holidays(self):
  300. holidays = pd.DataFrame({
  301. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  302. 'holiday': ['seans-bday'] * 2,
  303. 'lower_window': [0] * 2,
  304. 'upper_window': [1] * 2,
  305. })
  306. model = Prophet(holidays=holidays, uncertainty_samples=0)
  307. model.fit(DATA).predict()
  308. def test_make_future_dataframe(self):
  309. N = 468
  310. train = DATA.head(N // 2)
  311. forecaster = Prophet()
  312. forecaster.fit(train)
  313. future = forecaster.make_future_dataframe(periods=3, freq='D',
  314. include_history=False)
  315. correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
  316. self.assertEqual(len(future), 3)
  317. for i in range(3):
  318. self.assertEqual(future.iloc[i]['ds'], correct[i])
  319. future = forecaster.make_future_dataframe(periods=3, freq='M',
  320. include_history=False)
  321. correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
  322. self.assertEqual(len(future), 3)
  323. for i in range(3):
  324. self.assertEqual(future.iloc[i]['ds'], correct[i])
  325. def test_auto_weekly_seasonality(self):
  326. # Should be enabled
  327. N = 15
  328. train = DATA.head(N)
  329. m = Prophet()
  330. self.assertEqual(m.weekly_seasonality, 'auto')
  331. m.fit(train)
  332. self.assertIn('weekly', m.seasonalities)
  333. self.assertEqual(
  334. m.seasonalities['weekly'],
  335. {
  336. 'period': 7,
  337. 'fourier_order': 3,
  338. 'prior_scale': 10.,
  339. 'mode': 'additive',
  340. },
  341. )
  342. # Should be disabled due to too short history
  343. N = 9
  344. train = DATA.head(N)
  345. m = Prophet()
  346. m.fit(train)
  347. self.assertNotIn('weekly', m.seasonalities)
  348. m = Prophet(weekly_seasonality=True)
  349. m.fit(train)
  350. self.assertIn('weekly', m.seasonalities)
  351. # Should be False due to weekly spacing
  352. train = DATA.iloc[::7, :]
  353. m = Prophet()
  354. m.fit(train)
  355. self.assertNotIn('weekly', m.seasonalities)
  356. m = Prophet(weekly_seasonality=2, seasonality_prior_scale=3.)
  357. m.fit(DATA)
  358. self.assertEqual(
  359. m.seasonalities['weekly'],
  360. {
  361. 'period': 7,
  362. 'fourier_order': 2,
  363. 'prior_scale': 3.,
  364. 'mode': 'additive',
  365. },
  366. )
  367. def test_auto_yearly_seasonality(self):
  368. # Should be enabled
  369. m = Prophet()
  370. self.assertEqual(m.yearly_seasonality, 'auto')
  371. m.fit(DATA)
  372. self.assertIn('yearly', m.seasonalities)
  373. self.assertEqual(
  374. m.seasonalities['yearly'],
  375. {
  376. 'period': 365.25,
  377. 'fourier_order': 10,
  378. 'prior_scale': 10.,
  379. 'mode': 'additive',
  380. },
  381. )
  382. # Should be disabled due to too short history
  383. N = 240
  384. train = DATA.head(N)
  385. m = Prophet()
  386. m.fit(train)
  387. self.assertNotIn('yearly', m.seasonalities)
  388. m = Prophet(yearly_seasonality=True)
  389. m.fit(train)
  390. self.assertIn('yearly', m.seasonalities)
  391. m = Prophet(yearly_seasonality=7, seasonality_prior_scale=3.)
  392. m.fit(DATA)
  393. self.assertEqual(
  394. m.seasonalities['yearly'],
  395. {
  396. 'period': 365.25,
  397. 'fourier_order': 7,
  398. 'prior_scale': 3.,
  399. 'mode': 'additive',
  400. },
  401. )
  402. def test_auto_daily_seasonality(self):
  403. # Should be enabled
  404. m = Prophet()
  405. self.assertEqual(m.daily_seasonality, 'auto')
  406. m.fit(DATA2)
  407. self.assertIn('daily', m.seasonalities)
  408. self.assertEqual(
  409. m.seasonalities['daily'],
  410. {
  411. 'period': 1,
  412. 'fourier_order': 4,
  413. 'prior_scale': 10.,
  414. 'mode': 'additive',
  415. },
  416. )
  417. # Should be disabled due to too short history
  418. N = 430
  419. train = DATA2.head(N)
  420. m = Prophet()
  421. m.fit(train)
  422. self.assertNotIn('daily', m.seasonalities)
  423. m = Prophet(daily_seasonality=True)
  424. m.fit(train)
  425. self.assertIn('daily', m.seasonalities)
  426. m = Prophet(daily_seasonality=7, seasonality_prior_scale=3.)
  427. m.fit(DATA2)
  428. self.assertEqual(
  429. m.seasonalities['daily'],
  430. {
  431. 'period': 1,
  432. 'fourier_order': 7,
  433. 'prior_scale': 3.,
  434. 'mode': 'additive',
  435. },
  436. )
  437. m = Prophet()
  438. m.fit(DATA)
  439. self.assertNotIn('daily', m.seasonalities)
  440. def test_subdaily_holidays(self):
  441. holidays = pd.DataFrame({
  442. 'ds': pd.to_datetime(['2017-01-02']),
  443. 'holiday': ['special_day'],
  444. })
  445. m = Prophet(holidays=holidays)
  446. m.fit(DATA2)
  447. fcst = m.predict()
  448. self.assertEqual(sum(fcst['special_day'] == 0), 575)
  449. def test_custom_seasonality(self):
  450. holidays = pd.DataFrame({
  451. 'ds': pd.to_datetime(['2017-01-02']),
  452. 'holiday': ['special_day'],
  453. 'prior_scale': [4.],
  454. })
  455. m = Prophet(holidays=holidays)
  456. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  457. prior_scale=2.)
  458. self.assertEqual(
  459. m.seasonalities['monthly'],
  460. {
  461. 'period': 30,
  462. 'fourier_order': 5,
  463. 'prior_scale': 2.,
  464. 'mode': 'additive',
  465. },
  466. )
  467. with self.assertRaises(ValueError):
  468. m.add_seasonality(name='special_day', period=30, fourier_order=5)
  469. with self.assertRaises(ValueError):
  470. m.add_seasonality(name='trend', period=30, fourier_order=5)
  471. m.add_seasonality(name='weekly', period=30, fourier_order=5)
  472. # Test priors
  473. m = Prophet(
  474. holidays=holidays, yearly_seasonality=False,
  475. seasonality_mode='multiplicative',
  476. )
  477. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  478. prior_scale=2., mode='additive')
  479. m.fit(DATA.copy())
  480. self.assertEqual(m.seasonalities['monthly']['mode'], 'additive')
  481. self.assertEqual(m.seasonalities['weekly']['mode'], 'multiplicative')
  482. seasonal_features, prior_scales, component_cols, modes = (
  483. m.make_all_seasonality_features(m.history)
  484. )
  485. self.assertEqual(sum(component_cols['monthly']), 10)
  486. self.assertEqual(sum(component_cols['special_day']), 1)
  487. self.assertEqual(sum(component_cols['weekly']), 6)
  488. self.assertEqual(sum(component_cols['additive_terms']), 10)
  489. self.assertEqual(sum(component_cols['multiplicative_terms']), 7)
  490. if seasonal_features.columns[0] == 'monthly_delim_1':
  491. true = [2.] * 10 + [10.] * 6 + [4.]
  492. self.assertEqual(sum(component_cols['monthly'][:10]), 10)
  493. self.assertEqual(sum(component_cols['weekly'][10:16]), 6)
  494. else:
  495. true = [10.] * 6 + [2.] * 10 + [4.]
  496. self.assertEqual(sum(component_cols['weekly'][:6]), 6)
  497. self.assertEqual(sum(component_cols['monthly'][6:16]), 10)
  498. self.assertEqual(prior_scales, true)
  499. def test_added_regressors(self):
  500. m = Prophet()
  501. m.add_regressor('binary_feature', prior_scale=0.2)
  502. m.add_regressor('numeric_feature', prior_scale=0.5)
  503. m.add_regressor(
  504. 'numeric_feature2', prior_scale=0.5, mode='multiplicative'
  505. )
  506. m.add_regressor('binary_feature2', standardize=True)
  507. df = DATA.copy()
  508. df['binary_feature'] = [0] * 255 + [1] * 255
  509. df['numeric_feature'] = range(510)
  510. df['numeric_feature2'] = range(510)
  511. with self.assertRaises(ValueError):
  512. # Require all regressors in df
  513. m.fit(df)
  514. df['binary_feature2'] = [1] * 100 + [0] * 410
  515. m.fit(df)
  516. # Check that standardizations are correctly set
  517. self.assertEqual(
  518. m.extra_regressors['binary_feature'],
  519. {
  520. 'prior_scale': 0.2,
  521. 'mu': 0,
  522. 'std': 1,
  523. 'standardize': 'auto',
  524. 'mode': 'additive',
  525. },
  526. )
  527. self.assertEqual(
  528. m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
  529. self.assertEqual(
  530. m.extra_regressors['numeric_feature']['mu'], 254.5)
  531. self.assertAlmostEqual(
  532. m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
  533. self.assertEqual(
  534. m.extra_regressors['numeric_feature2']['mode'], 'multiplicative')
  535. self.assertEqual(
  536. m.extra_regressors['binary_feature2']['prior_scale'], 10.)
  537. self.assertAlmostEqual(
  538. m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
  539. self.assertAlmostEqual(
  540. m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
  541. # Check that standardization is done correctly
  542. df2 = m.setup_dataframe(df.copy())
  543. self.assertEqual(df2['binary_feature'][0], 0)
  544. self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
  545. self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
  546. # Check that feature matrix and prior scales are correctly constructed
  547. seasonal_features, prior_scales, component_cols, modes = (
  548. m.make_all_seasonality_features(df2)
  549. )
  550. self.assertEqual(seasonal_features.shape[1], 30)
  551. names = ['binary_feature', 'numeric_feature', 'binary_feature2']
  552. true_priors = [0.2, 0.5, 10.]
  553. for i, name in enumerate(names):
  554. self.assertIn(name, seasonal_features)
  555. self.assertEqual(sum(component_cols[name]), 1)
  556. self.assertEqual(
  557. sum(np.array(prior_scales) * component_cols[name]),
  558. true_priors[i],
  559. )
  560. # Check that forecast components are reasonable
  561. future = pd.DataFrame({
  562. 'ds': ['2014-06-01'],
  563. 'binary_feature': [0],
  564. 'numeric_feature': [10],
  565. 'numeric_feature2': [10],
  566. })
  567. with self.assertRaises(ValueError):
  568. m.predict(future)
  569. future['binary_feature2'] = 0
  570. fcst = m.predict(future)
  571. self.assertEqual(fcst.shape[1], 37)
  572. self.assertEqual(fcst['binary_feature'][0], 0)
  573. self.assertAlmostEqual(
  574. fcst['extra_regressors_additive'][0],
  575. fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
  576. )
  577. self.assertAlmostEqual(
  578. fcst['extra_regressors_multiplicative'][0],
  579. fcst['numeric_feature2'][0],
  580. )
  581. self.assertAlmostEqual(
  582. fcst['additive_terms'][0],
  583. fcst['yearly'][0] + fcst['weekly'][0]
  584. + fcst['extra_regressors_additive'][0],
  585. )
  586. self.assertAlmostEqual(
  587. fcst['multiplicative_terms'][0],
  588. fcst['extra_regressors_multiplicative'][0],
  589. )
  590. self.assertAlmostEqual(
  591. fcst['yhat'][0],
  592. fcst['trend'][0] * (1 + fcst['multiplicative_terms'][0])
  593. + fcst['additive_terms'][0],
  594. )
  595. # Check fails if constant extra regressor
  596. df['constant_feature'] = 5
  597. m = Prophet()
  598. m.add_regressor('constant_feature')
  599. with self.assertRaises(ValueError):
  600. m.fit(df.copy())
  601. def test_set_seasonality_mode(self):
  602. # Setting attribute
  603. m = Prophet()
  604. self.assertEqual(m.seasonality_mode, 'additive')
  605. m = Prophet(seasonality_mode='multiplicative')
  606. self.assertEqual(m.seasonality_mode, 'multiplicative')
  607. with self.assertRaises(ValueError):
  608. Prophet(seasonality_mode='batman')
  609. def test_seasonality_modes(self):
  610. # Model with holidays, seasonalities, and extra regressors
  611. holidays = pd.DataFrame({
  612. 'ds': pd.to_datetime(['2016-12-25']),
  613. 'holiday': ['xmas'],
  614. 'lower_window': [-1],
  615. 'upper_window': [0],
  616. })
  617. m = Prophet(seasonality_mode='multiplicative', holidays=holidays)
  618. m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3)
  619. m.add_regressor('binary_feature', mode='additive')
  620. m.add_regressor('numeric_feature')
  621. # Construct seasonal features
  622. df = DATA.copy()
  623. df['binary_feature'] = [0] * 255 + [1] * 255
  624. df['numeric_feature'] = range(510)
  625. df = m.setup_dataframe(df, initialize_scales=True)
  626. m.history = df.copy()
  627. m.set_auto_seasonalities()
  628. seasonal_features, prior_scales, component_cols, modes = (
  629. m.make_all_seasonality_features(df))
  630. self.assertEqual(sum(component_cols['additive_terms']), 7)
  631. self.assertEqual(sum(component_cols['multiplicative_terms']), 29)
  632. self.assertEqual(
  633. set(modes['additive']),
  634. {'monthly', 'binary_feature', 'additive_terms',
  635. 'extra_regressors_additive'},
  636. )
  637. self.assertEqual(
  638. set(modes['multiplicative']),
  639. {'weekly', 'yearly', 'xmas', 'numeric_feature',
  640. 'multiplicative_terms', 'extra_regressors_multiplicative',
  641. 'holidays',
  642. },
  643. )