| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- # Copyright (c) 2017-present, Facebook, Inc.
- # All rights reserved.
- #
- # This source code is licensed under the BSD-style license found in the
- # LICENSE file in the root directory of this source tree. An additional grant
- # of patent rights can be found in the PATENTS file in the same directory.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import os
- import numpy as np
- import pandas as pd
- # fb-block 1 start
- from unittest import TestCase
- from fbprophet import Prophet
- # fb-block 1 end
- # fb-block 2
- DATA = pd.read_csv(
- os.path.join(os.path.dirname(__file__), 'data.csv'),
- parse_dates=['ds'],
- )
- DATA2 = pd.read_csv(
- os.path.join(os.path.dirname(__file__), 'data2.csv'),
- parse_dates=['ds'],
- )
- class TestProphet(TestCase):
- def test_fit_predict(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2)
- future = DATA.tail(N // 2)
- forecaster = Prophet()
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_no_seasons(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2)
- future = DATA.tail(N // 2)
- forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_no_changepoints(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2)
- future = DATA.tail(N // 2)
- forecaster = Prophet(n_changepoints=0)
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_changepoint_not_in_history(self):
- train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
- train[(train['ds'] > '2014-01-01')] += 20
- future = pd.DataFrame({'ds': DATA['ds']})
- forecaster = Prophet(changepoints=['2013-06-06'])
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_duplicates(self):
- N = DATA.shape[0]
- train1 = DATA.head(N // 2).copy()
- train2 = DATA.head(N // 2).copy()
- train2['y'] += 10
- train = train1.append(train2)
- future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
- forecaster = Prophet()
- forecaster.fit(train)
- forecaster.predict(future)
- def test_setup_dataframe(self):
- m = Prophet()
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- self.assertTrue('t' in history)
- self.assertEqual(history['t'].min(), 0.0)
- self.assertEqual(history['t'].max(), 1.0)
- self.assertTrue('y_scaled' in history)
- self.assertEqual(history['y_scaled'].max(), 1.0)
- def test_get_changepoints(self):
- m = Prophet()
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- m.history = history
- m.set_changepoints()
- cp = m.changepoints_t
- self.assertEqual(cp.shape[0], m.n_changepoints)
- self.assertEqual(len(cp.shape), 1)
- self.assertTrue(cp.min() > 0)
- self.assertTrue(cp.max() < N)
- mat = m.get_changepoint_matrix()
- self.assertEqual(mat.shape[0], N // 2)
- self.assertEqual(mat.shape[1], m.n_changepoints)
- def test_get_zero_changepoints(self):
- m = Prophet(n_changepoints=0)
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- m.history = history
- m.set_changepoints()
- cp = m.changepoints_t
- self.assertEqual(cp.shape[0], 1)
- self.assertEqual(cp[0], 0)
- mat = m.get_changepoint_matrix()
- self.assertEqual(mat.shape[0], N // 2)
- self.assertEqual(mat.shape[1], 1)
- def test_fourier_series_weekly(self):
- mat = Prophet.fourier_series(DATA['ds'], 7, 3)
- # These are from the R forecast package directly.
- true_values = np.array([
- 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
- ])
- self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
- def test_fourier_series_yearly(self):
- mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
- # These are from the R forecast package directly.
- true_values = np.array([
- 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
- ])
- self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
- def test_growth_init(self):
- model = Prophet(growth='logistic')
- history = DATA.iloc[:468].copy()
- history['cap'] = history['y'].max()
- history = model.setup_dataframe(history, initialize_scales=True)
- k, m = model.linear_growth_init(history)
- self.assertAlmostEqual(k, 0.3055671)
- self.assertAlmostEqual(m, 0.5307511)
- k, m = model.logistic_growth_init(history)
- self.assertAlmostEqual(k, 1.507925, places=4)
- self.assertAlmostEqual(m, -0.08167497, places=4)
- def test_piecewise_linear(self):
- model = Prophet()
- t = np.arange(11.)
- m = 0
- k = 1.0
- deltas = np.array([0.5])
- changepoint_ts = np.array([5])
- y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
- y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
- 6.5, 8.0, 9.5, 11.0, 12.5])
- self.assertEqual((y - y_true).sum(), 0.0)
- t = t[8:]
- y_true = y_true[8:]
- y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
- self.assertEqual((y - y_true).sum(), 0.0)
- def test_piecewise_logistic(self):
- model = Prophet()
- t = np.arange(11.)
- cap = np.ones(11) * 10
- m = 0
- k = 1.0
- deltas = np.array([0.5])
- changepoint_ts = np.array([5])
- y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
- y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
- 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
- 9.999963])
- self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
- t = t[8:]
- y_true = y_true[8:]
- cap = cap[8:]
- y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
- self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
- def test_holidays(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2016-12-25']),
- 'holiday': ['xmas'],
- 'lower_window': [-1],
- 'upper_window': [0],
- })
- model = Prophet(holidays=holidays)
- df = pd.DataFrame({
- 'ds': pd.date_range('2016-12-20', '2016-12-31')
- })
- feats = model.make_holiday_features(df['ds'])
- # 11 columns generated even though only 8 overlap
- self.assertEqual(feats.shape, (df.shape[0], 2))
- self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2016-12-25']),
- 'holiday': ['xmas'],
- 'lower_window': [-1],
- 'upper_window': [10],
- })
- feats = Prophet(holidays=holidays).make_holiday_features(df['ds'])
- # 12 columns generated even though only 8 overlap
- self.assertEqual(feats.shape, (df.shape[0], 12))
- def test_fit_with_holidays(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
- 'holiday': ['seans-bday'] * 2,
- 'lower_window': [0] * 2,
- 'upper_window': [1] * 2,
- })
- model = Prophet(holidays=holidays, uncertainty_samples=0)
- model.fit(DATA).predict()
- def test_make_future_dataframe(self):
- N = 468
- train = DATA.head(N // 2)
- forecaster = Prophet()
- forecaster.fit(train)
- future = forecaster.make_future_dataframe(periods=3, freq='D',
- include_history=False)
- correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
- self.assertEqual(len(future), 3)
- for i in range(3):
- self.assertEqual(future.iloc[i]['ds'], correct[i])
- future = forecaster.make_future_dataframe(periods=3, freq='M',
- include_history=False)
- correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
- self.assertEqual(len(future), 3)
- for i in range(3):
- self.assertEqual(future.iloc[i]['ds'], correct[i])
- def test_auto_weekly_seasonality(self):
- # Should be enabled
- N = 15
- train = DATA.head(N)
- m = Prophet()
- self.assertEqual(m.weekly_seasonality, 'auto')
- m.fit(train)
- self.assertIn('weekly', m.seasonalities)
- self.assertEqual(m.seasonalities['weekly'], (7, 3))
- # Should be disabled due to too short history
- N = 9
- train = DATA.head(N)
- m = Prophet()
- m.fit(train)
- self.assertNotIn('weekly', m.seasonalities)
- m = Prophet(weekly_seasonality=True)
- m.fit(train)
- self.assertIn('weekly', m.seasonalities)
- # Should be False due to weekly spacing
- train = DATA.iloc[::7, :]
- m = Prophet()
- m.fit(train)
- self.assertNotIn('weekly', m.seasonalities)
- m = Prophet(weekly_seasonality=2)
- m.fit(DATA)
- self.assertEqual(m.seasonalities['weekly'], (7, 2))
- def test_auto_yearly_seasonality(self):
- # Should be enabled
- m = Prophet()
- self.assertEqual(m.yearly_seasonality, 'auto')
- m.fit(DATA)
- self.assertIn('yearly', m.seasonalities)
- self.assertEqual(m.seasonalities['yearly'], (365.25, 10))
- # Should be disabled due to too short history
- N = 240
- train = DATA.head(N)
- m = Prophet()
- m.fit(train)
- self.assertNotIn('yearly', m.seasonalities)
- m = Prophet(yearly_seasonality=True)
- m.fit(train)
- self.assertIn('yearly', m.seasonalities)
- m = Prophet(yearly_seasonality=7)
- m.fit(DATA)
- self.assertEqual(m.seasonalities['yearly'], (365.25, 7))
- def test_auto_daily_seasonality(self):
- # Should be enabled
- m = Prophet()
- self.assertEqual(m.yearly_seasonality, 'auto')
- m.fit(DATA2)
- self.assertIn('daily', m.seasonalities)
- self.assertEqual(m.seasonalities['daily'], (1, 4))
- # Should be disabled due to too short history
- N = 430
- train = DATA2.head(N)
- m = Prophet()
- m.fit(train)
- self.assertNotIn('daily', m.seasonalities)
- m = Prophet(daily_seasonality=True)
- m.fit(train)
- self.assertIn('daily', m.seasonalities)
- m = Prophet(daily_seasonality=7)
- m.fit(DATA2)
- self.assertEqual(m.seasonalities['daily'], (1, 7))
- m = Prophet()
- m.fit(DATA)
- self.assertNotIn('daily', m.seasonalities)
- def test_subdaily_holidays(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2017-01-02']),
- 'holiday': ['new_years'],
- })
- m = Prophet(holidays=holidays)
- m.fit(DATA2)
- fcst = m.predict()
- self.assertEqual(sum(fcst['new_years'] == 0), 575)
- def test_custom_seasonality(self):
- m = Prophet()
- m.add_seasonality(name='monthly', period=30, fourier_order=5)
- self.assertEqual(m.seasonalities['monthly'], (30, 5))
|