test_prophet.R 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. library(prophet)
  2. context("Prophet tests")
  3. DATA <- read.csv('data.csv')
  4. N <- nrow(DATA)
  5. train <- DATA[1:floor(N / 2), ]
  6. future <- DATA[(ceiling(N/2) + 1):N, ]
  7. DATA2 <- read.csv('data2.csv')
  8. DATA$ds <- prophet:::set_date(DATA$ds)
  9. DATA2$ds <- prophet:::set_date(DATA2$ds)
  10. test_that("fit_predict", {
  11. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  12. m <- prophet(train)
  13. expect_error(predict(m, future), NA)
  14. })
  15. test_that("fit_predict_no_seasons", {
  16. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  17. m <- prophet(train, weekly.seasonality = FALSE, yearly.seasonality = FALSE)
  18. expect_error(predict(m, future), NA)
  19. })
  20. test_that("fit_predict_no_changepoints", {
  21. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  22. m <- prophet(train, n.changepoints = 0)
  23. expect_error(predict(m, future), NA)
  24. })
  25. test_that("fit_predict_changepoint_not_in_history", {
  26. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  27. train_t <- dplyr::mutate(DATA, ds=prophet:::set_date(ds))
  28. train_t <- dplyr::filter(train_t,
  29. (ds < prophet:::set_date('2013-01-01')) |
  30. (ds > prophet:::set_date('2014-01-01')))
  31. future <- data.frame(ds=DATA$ds)
  32. m <- prophet(train_t, changepoints=c('2013-06-06'))
  33. expect_error(predict(m, future), NA)
  34. })
  35. test_that("fit_predict_duplicates", {
  36. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  37. train2 <- train
  38. train2$y <- train2$y + 10
  39. train_t <- rbind(train, train2)
  40. m <- prophet(train_t)
  41. expect_error(predict(m, future), NA)
  42. })
  43. test_that("fit_predict_constant_history", {
  44. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  45. train2 <- train
  46. train2$y <- 20
  47. m <- prophet(train2)
  48. fcst <- predict(m, future)
  49. expect_equal(tail(fcst$yhat, 1), 20)
  50. train2$y <- 0
  51. m <- prophet(train2)
  52. fcst <- predict(m, future)
  53. expect_equal(tail(fcst$yhat, 1), 0)
  54. })
  55. test_that("setup_dataframe", {
  56. history <- train
  57. m <- prophet(history, fit = FALSE)
  58. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  59. history <- out$df
  60. expect_true('t' %in% colnames(history))
  61. expect_equal(min(history$t), 0)
  62. expect_equal(max(history$t), 1)
  63. expect_true('y_scaled' %in% colnames(history))
  64. expect_equal(max(history$y_scaled), 1)
  65. })
  66. test_that("logistic_floor", {
  67. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  68. m <- prophet(growth = 'logistic')
  69. history <- train
  70. history$floor <- 10.
  71. history$cap <- 80.
  72. future1 <- future
  73. future1$cap <- 80.
  74. future1$floor <- 10.
  75. m <- fit.prophet(m, history, algorithm = 'Newton')
  76. expect_true(m$logistic.floor)
  77. expect_true('floor' %in% colnames(m$history))
  78. expect_equal(m$history$y_scaled[1], 1., tolerance = 1e-6)
  79. fcst1 <- predict(m, future1)
  80. m2 <- prophet(growth = 'logistic')
  81. history2 <- history
  82. history2$y <- history2$y + 10.
  83. history2$floor <- history2$floor + 10.
  84. history2$cap <- history2$cap + 10.
  85. future1$cap <- future1$cap + 10.
  86. future1$floor <- future1$floor + 10.
  87. m2 <- fit.prophet(m2, history2, algorithm = 'Newton')
  88. expect_equal(m2$history$y_scaled[1], 1., tolerance = 1e-6)
  89. fcst2 <- predict(m, future1)
  90. fcst2$yhat <- fcst2$yhat - 10.
  91. # Check for approximate shift invariance
  92. expect_true(all(abs(fcst1$yhat - fcst2$yhat) < 1))
  93. })
  94. test_that("get_changepoints", {
  95. history <- train
  96. m <- prophet(history, fit = FALSE)
  97. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  98. history <- out$df
  99. m <- out$m
  100. m$history <- history
  101. m <- prophet:::set_changepoints(m)
  102. cp <- m$changepoints.t
  103. expect_equal(length(cp), m$n.changepoints)
  104. expect_true(min(cp) > 0)
  105. expect_true(max(cp) < 1)
  106. })
  107. test_that("get_zero_changepoints", {
  108. history <- train
  109. m <- prophet(history, n.changepoints = 0, fit = FALSE)
  110. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  111. m <- out$m
  112. history <- out$df
  113. m$history <- history
  114. m <- prophet:::set_changepoints(m)
  115. cp <- m$changepoints.t
  116. expect_equal(length(cp), 1)
  117. expect_equal(cp[1], 0)
  118. })
  119. test_that("override_n_changepoints", {
  120. history <- train[1:20,]
  121. m <- prophet(history, fit = FALSE)
  122. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  123. m <- out$m
  124. history <- out$df
  125. m$history <- history
  126. m <- prophet:::set_changepoints(m)
  127. expect_equal(m$n.changepoints, 15)
  128. cp <- m$changepoints.t
  129. expect_equal(length(cp), 15)
  130. })
  131. test_that("fourier_series_weekly", {
  132. true.values <- c(0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837,
  133. -0.9009689)
  134. mat <- prophet:::fourier_series(DATA$ds, 7, 3)
  135. expect_equal(true.values, mat[1, ], tolerance = 1e-6)
  136. })
  137. test_that("fourier_series_yearly", {
  138. true.values <- c(0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249,
  139. 0.6874572)
  140. mat <- prophet:::fourier_series(DATA$ds, 365.25, 3)
  141. expect_equal(true.values, mat[1, ], tolerance = 1e-6)
  142. })
  143. test_that("growth_init", {
  144. history <- DATA[1:468, ]
  145. history$cap <- max(history$y)
  146. m <- prophet(history, growth = 'logistic', fit = FALSE)
  147. out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE)
  148. m <- out$m
  149. history <- out$df
  150. params <- prophet:::linear_growth_init(history)
  151. expect_equal(params[1], 0.3055671, tolerance = 1e-6)
  152. expect_equal(params[2], 0.5307511, tolerance = 1e-6)
  153. params <- prophet:::logistic_growth_init(history)
  154. expect_equal(params[1], 1.507925, tolerance = 1e-6)
  155. expect_equal(params[2], -0.08167497, tolerance = 1e-6)
  156. })
  157. test_that("piecewise_linear", {
  158. t <- seq(0, 10)
  159. m <- 0
  160. k <- 1.0
  161. deltas <- c(0.5)
  162. changepoint.ts <- c(5)
  163. y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts)
  164. y.true <- c(0, 1, 2, 3, 4, 5, 6.5, 8, 9.5, 11, 12.5)
  165. expect_equal(y, y.true)
  166. t <- t[8:length(t)]
  167. y.true <- y.true[8:length(y.true)]
  168. y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts)
  169. expect_equal(y, y.true)
  170. })
  171. test_that("piecewise_logistic", {
  172. t <- seq(0, 10)
  173. cap <- rep(10, 11)
  174. m <- 0
  175. k <- 1.0
  176. deltas <- c(0.5)
  177. changepoint.ts <- c(5)
  178. y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts)
  179. y.true <- c(5.000000, 7.310586, 8.807971, 9.525741, 9.820138, 9.933071,
  180. 9.984988, 9.996646, 9.999252, 9.999833, 9.999963)
  181. expect_equal(y, y.true, tolerance = 1e-6)
  182. t <- t[8:length(t)]
  183. y.true <- y.true[8:length(y.true)]
  184. cap <- cap[8:length(cap)]
  185. y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts)
  186. expect_equal(y, y.true, tolerance = 1e-6)
  187. })
  188. test_that("holidays", {
  189. holidays = data.frame(ds = c('2016-12-25'),
  190. holiday = c('xmas'),
  191. lower_window = c(-1),
  192. upper_window = c(0))
  193. df <- data.frame(
  194. ds = seq(prophet:::set_date('2016-12-20'),
  195. prophet:::set_date('2016-12-31'), by='d'))
  196. m <- prophet(train, holidays = holidays, fit = FALSE)
  197. out <- prophet:::make_holiday_features(m, df$ds)
  198. feats <- out$holiday.features
  199. priors <- out$prior.scales
  200. expect_equal(nrow(feats), nrow(df))
  201. expect_equal(ncol(feats), 2)
  202. expect_equal(sum(colSums(feats) - c(1, 1)), 0)
  203. expect_true(all(priors == c(10., 10.)))
  204. holidays = data.frame(ds = c('2016-12-25'),
  205. holiday = c('xmas'),
  206. lower_window = c(-1),
  207. upper_window = c(10))
  208. m <- prophet(train, holidays = holidays, fit = FALSE)
  209. out <- prophet:::make_holiday_features(m, df$ds)
  210. feats <- out$holiday.features
  211. priors <- out$prior.scales
  212. expect_equal(nrow(feats), nrow(df))
  213. expect_equal(ncol(feats), 12)
  214. expect_true(all(priors == rep(10, 12)))
  215. # Check prior specifications
  216. holidays <- data.frame(
  217. ds = prophet:::set_date(c('2016-12-25', '2017-12-25')),
  218. holiday = c('xmas', 'xmas'),
  219. lower_window = c(-1, -1),
  220. upper_window = c(0, 0),
  221. prior_scale = c(5., 5.)
  222. )
  223. m <- prophet(holidays = holidays, fit = FALSE)
  224. out <- prophet:::make_holiday_features(m, df$ds)
  225. priors <- out$prior.scales
  226. expect_true(all(priors == c(5., 5.)))
  227. # 2 different priors
  228. holidays2 <- data.frame(
  229. ds = prophet:::set_date(c('2012-06-06', '2013-06-06')),
  230. holiday = c('seans-bday', 'seans-bday'),
  231. lower_window = c(0, 0),
  232. upper_window = c(1, 1),
  233. prior_scale = c(8, 8)
  234. )
  235. holidays2 <- rbind(holidays, holidays2)
  236. m <- prophet(holidays = holidays2, fit = FALSE)
  237. out <- prophet:::make_holiday_features(m, df$ds)
  238. priors <- out$prior.scales
  239. expect_true(all(priors == c(8, 8, 5, 5)))
  240. holidays2 <- data.frame(
  241. ds = prophet:::set_date(c('2012-06-06', '2013-06-06')),
  242. holiday = c('seans-bday', 'seans-bday'),
  243. lower_window = c(0, 0),
  244. upper_window = c(1, 1)
  245. )
  246. holidays2 <- dplyr::bind_rows(holidays, holidays2)
  247. m <- prophet(holidays = holidays2, fit = FALSE, holidays.prior.scale = 4)
  248. out <- prophet:::make_holiday_features(m, df$ds)
  249. priors <- out$prior.scales
  250. expect_true(all(priors == c(4, 4, 5, 5)))
  251. # Check incompatible priors
  252. holidays <- data.frame(
  253. ds = prophet:::set_date(c('2016-12-25', '2016-12-27')),
  254. holiday = c('xmasish', 'xmasish'),
  255. lower_window = c(-1, -1),
  256. upper_window = c(0, 0),
  257. prior_scale = c(5., 6.)
  258. )
  259. m <- prophet(holidays = holidays, fit = FALSE)
  260. expect_error(prophet:::make_holiday_features(m, df$ds))
  261. })
  262. test_that("fit_with_holidays", {
  263. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  264. holidays <- data.frame(ds = c('2012-06-06', '2013-06-06'),
  265. holiday = c('seans-bday', 'seans-bday'),
  266. lower_window = c(0, 0),
  267. upper_window = c(1, 1))
  268. m <- prophet(DATA, holidays = holidays, uncertainty.samples = 0)
  269. expect_error(predict(m), NA)
  270. })
  271. test_that("make_future_dataframe", {
  272. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  273. train.t <- DATA[1:234, ]
  274. m <- prophet(train.t)
  275. future <- make_future_dataframe(m, periods = 3, freq = 'day',
  276. include_history = FALSE)
  277. correct <- prophet:::set_date(c('2013-04-26', '2013-04-27', '2013-04-28'))
  278. expect_equal(future$ds, correct)
  279. future <- make_future_dataframe(m, periods = 3, freq = 'month',
  280. include_history = FALSE)
  281. correct <- prophet:::set_date(c('2013-05-25', '2013-06-25', '2013-07-25'))
  282. expect_equal(future$ds, correct)
  283. })
  284. test_that("auto_weekly_seasonality", {
  285. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  286. # Should be enabled
  287. N.w <- 15
  288. train.w <- DATA[1:N.w, ]
  289. m <- prophet(train.w, fit = FALSE)
  290. expect_equal(m$weekly.seasonality, 'auto')
  291. m <- fit.prophet(m, train.w)
  292. expect_true('weekly' %in% names(m$seasonalities))
  293. true <- list(period = 7, fourier.order = 3, prior.scale = 10)
  294. for (name in names(true)) {
  295. expect_equal(m$seasonalities$weekly[[name]], true[[name]])
  296. }
  297. # Should be disabled due to too short history
  298. N.w <- 9
  299. train.w <- DATA[1:N.w, ]
  300. m <- prophet(train.w)
  301. expect_false('weekly' %in% names(m$seasonalities))
  302. m <- prophet(train.w, weekly.seasonality = TRUE)
  303. expect_true('weekly' %in% names(m$seasonalities))
  304. # Should be False due to weekly spacing
  305. train.w <- DATA[seq(1, nrow(DATA), 7), ]
  306. m <- prophet(train.w)
  307. expect_false('weekly' %in% names(m$seasonalities))
  308. m <- prophet(DATA, weekly.seasonality = 2, seasonality.prior.scale = 3)
  309. true <- list(period = 7, fourier.order = 2, prior.scale = 3)
  310. for (name in names(true)) {
  311. expect_equal(m$seasonalities$weekly[[name]], true[[name]])
  312. }
  313. })
  314. test_that("auto_yearly_seasonality", {
  315. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  316. # Should be enabled
  317. m <- prophet(DATA, fit = FALSE)
  318. expect_equal(m$yearly.seasonality, 'auto')
  319. m <- fit.prophet(m, DATA)
  320. expect_true('yearly' %in% names(m$seasonalities))
  321. true <- list(period = 365.25, fourier.order = 10, prior.scale = 10)
  322. for (name in names(true)) {
  323. expect_equal(m$seasonalities$yearly[[name]], true[[name]])
  324. }
  325. # Should be disabled due to too short history
  326. N.w <- 240
  327. train.y <- DATA[1:N.w, ]
  328. m <- prophet(train.y)
  329. expect_false('yearly' %in% names(m$seasonalities))
  330. m <- prophet(train.y, yearly.seasonality = TRUE)
  331. expect_true('yearly' %in% names(m$seasonalities))
  332. m <- prophet(DATA, yearly.seasonality = 7, seasonality.prior.scale = 3)
  333. true <- list(period = 365.25, fourier.order = 7, prior.scale = 3)
  334. for (name in names(true)) {
  335. expect_equal(m$seasonalities$yearly[[name]], true[[name]])
  336. }
  337. })
  338. test_that("auto_daily_seasonality", {
  339. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  340. # Should be enabled
  341. m <- prophet(DATA2, fit = FALSE)
  342. expect_equal(m$daily.seasonality, 'auto')
  343. m <- fit.prophet(m, DATA2)
  344. expect_true('daily' %in% names(m$seasonalities))
  345. true <- list(period = 1, fourier.order = 4, prior.scale = 10)
  346. for (name in names(true)) {
  347. expect_equal(m$seasonalities$daily[[name]], true[[name]])
  348. }
  349. # Should be disabled due to too short history
  350. N.d <- 430
  351. train.y <- DATA2[1:N.d, ]
  352. m <- prophet(train.y)
  353. expect_false('daily' %in% names(m$seasonalities))
  354. m <- prophet(train.y, daily.seasonality = TRUE)
  355. expect_true('daily' %in% names(m$seasonalities))
  356. m <- prophet(DATA2, daily.seasonality = 7, seasonality.prior.scale = 3)
  357. true <- list(period = 1, fourier.order = 7, prior.scale = 3)
  358. for (name in names(true)) {
  359. expect_equal(m$seasonalities$daily[[name]], true[[name]])
  360. }
  361. m <- prophet(DATA)
  362. expect_false('daily' %in% names(m$seasonalities))
  363. })
  364. test_that("test_subdaily_holidays", {
  365. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  366. holidays <- data.frame(ds = c('2017-01-02'),
  367. holiday = c('special_day'))
  368. m <- prophet(DATA2, holidays=holidays)
  369. fcst <- predict(m)
  370. expect_equal(sum(fcst$special_day == 0), 575)
  371. })
  372. test_that("custom_seasonality", {
  373. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  374. holidays <- data.frame(ds = c('2017-01-02'),
  375. holiday = c('special_day'),
  376. prior_scale = c(4))
  377. m <- prophet(holidays=holidays)
  378. m <- add_seasonality(m, name='monthly', period=30, fourier.order=5)
  379. true <- list(period = 30, fourier.order = 5, prior.scale = 10)
  380. for (name in names(true)) {
  381. expect_equal(m$seasonalities$monthly[[name]], true[[name]])
  382. }
  383. expect_error(
  384. add_seasonality(m, name='special_day', period=30, fourier_order=5)
  385. )
  386. expect_error(
  387. add_seasonality(m, name='trend', period=30, fourier_order=5)
  388. )
  389. m <- add_seasonality(m, name='weekly', period=30, fourier.order=5)
  390. # Test priors
  391. m <- prophet(holidays = holidays, yearly.seasonality = FALSE)
  392. m <- add_seasonality(
  393. m, name='monthly', period=30, fourier.order=5, prior.scale = 2)
  394. m <- fit.prophet(m, DATA)
  395. prior.scales <- prophet:::make_all_seasonality_features(
  396. m, m$history)$prior.scales
  397. expect_true(all(prior.scales == c(rep(2, 10), rep(10, 6), 4)))
  398. })
  399. test_that("added_regressors", {
  400. skip_if_not(Sys.getenv('R_ARCH') != '/i386')
  401. m <- prophet()
  402. m <- add_regressor(m, 'binary_feature', prior.scale=0.2)
  403. m <- add_regressor(m, 'numeric_feature', prior.scale=0.5)
  404. m <- add_regressor(m, 'binary_feature2', standardize=TRUE)
  405. df <- DATA
  406. df$binary_feature <- c(rep(0, 255), rep(1, 255))
  407. df$numeric_feature <- 0:509
  408. # Require all regressors in df
  409. expect_error(
  410. fit.prophet(m, df)
  411. )
  412. df$binary_feature2 <- c(rep(1, 100), rep(0, 410))
  413. m <- fit.prophet(m, df)
  414. # Check that standardizations are correctly set
  415. true <- list(prior.scale = 0.2, mu = 0, std = 1, standardize = 'auto')
  416. for (name in names(true)) {
  417. expect_equal(true[[name]], m$extra_regressors$binary_feature[[name]])
  418. }
  419. true <- list(prior.scale = 0.5, mu = 254.5, std = 147.368585)
  420. for (name in names(true)) {
  421. expect_equal(true[[name]], m$extra_regressors$numeric_feature[[name]],
  422. tolerance = 1e-5)
  423. }
  424. true <- list(prior.scale = 10., mu = 0.1960784, std = 0.3974183)
  425. for (name in names(true)) {
  426. expect_equal(true[[name]], m$extra_regressors$binary_feature2[[name]],
  427. tolerance = 1e-5)
  428. }
  429. # Check that standardization is done correctly
  430. df2 <- prophet:::setup_dataframe(m, df)$df
  431. expect_equal(df2$binary_feature[1], 0)
  432. expect_equal(df2$numeric_feature[1], -1.726962, tolerance = 1e-4)
  433. expect_equal(df2$binary_feature2[1], 2.022859, tolerance = 1e-4)
  434. # Check that feature matrix and prior scales are correctly constructed
  435. out <- prophet:::make_all_seasonality_features(m, df2)
  436. seasonal.features <- out$seasonal.features
  437. prior.scales <- out$prior.scales
  438. expect_true('binary_feature' %in% colnames(seasonal.features))
  439. expect_true('numeric_feature' %in% colnames(seasonal.features))
  440. expect_true('binary_feature2' %in% colnames(seasonal.features))
  441. expect_equal(ncol(seasonal.features), 29)
  442. expect_true(all(sort(prior.scales[27:29]) == c(0.2, 0.5, 10.)))
  443. # Check that forecast components are reasonable
  444. future <- data.frame(
  445. ds = c('2014-06-01'), binary_feature = c(0), numeric_feature = c(10))
  446. expect_error(predict(m, future))
  447. future$binary_feature2 <- 0.
  448. fcst <- predict(m, future)
  449. expect_equal(ncol(fcst), 31)
  450. expect_equal(fcst$binary_feature[1], 0)
  451. expect_equal(fcst$extra_regressors[1],
  452. fcst$numeric_feature[1] + fcst$binary_feature2[1])
  453. expect_equal(fcst$seasonalities[1], fcst$yearly[1] + fcst$weekly[1])
  454. expect_equal(fcst$seasonal[1],
  455. fcst$seasonalities[1] + fcst$extra_regressors[1])
  456. expect_equal(fcst$yhat[1], fcst$trend[1] + fcst$seasonal[1])
  457. # Check fails if constant extra regressor
  458. df$constant_feature <- 5
  459. m <- prophet()
  460. m <- add_regressor(m, 'constant_feature')
  461. expect_error(fit.prophet(m, df))
  462. })