prophet.stan 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. functions {
  2. matrix get_changepoint_matrix(vector t, vector t_change, int T, int S) {
  3. // Assumes t and t_change are sorted.
  4. matrix[T, S] A;
  5. row_vector[S] a_row;
  6. int cp_idx;
  7. // Start with an empty matrix.
  8. A = rep_matrix(0, T, S);
  9. a_row = rep_row_vector(0, S);
  10. cp_idx = 1;
  11. // Fill in each row of A.
  12. for (i in 1:T) {
  13. while ((cp_idx <= S) && (t[i] >= t_change[cp_idx])) {
  14. a_row[cp_idx] = 1;
  15. cp_idx += 1;
  16. }
  17. A[i] = a_row;
  18. }
  19. return A;
  20. }
  21. // Logistic trend functions
  22. vector logistic_gamma(real k, real m, vector delta, vector t_change, int S) {
  23. vector[S] gamma; // adjusted offsets, for piecewise continuity
  24. vector[S + 1] k_s; // actual rate in each segment
  25. real m_pr;
  26. // Compute the rate in each segment
  27. k_s[1] = k;
  28. for (i in 1:S) {
  29. k_s[i + 1] = k_s[i] + delta[i];
  30. }
  31. // Piecewise offsets
  32. m_pr = m; // The offset in the previous segment
  33. for (i in 1:S) {
  34. gamma[i] = (t_change[i] - m_pr) * (1 - k_s[i] / k_s[i + 1]);
  35. m_pr = m_pr + gamma[i]; // update for the next segment
  36. }
  37. return gamma;
  38. }
  39. vector logistic_trend(
  40. real k,
  41. real m,
  42. vector delta,
  43. vector t,
  44. vector cap,
  45. matrix A,
  46. vector t_change,
  47. int S
  48. ) {
  49. vector[S] gamma;
  50. gamma = logistic_gamma(k, m, delta, t_change, S);
  51. return cap ./ (1 + exp(-(k + A * delta) .* (t - (m + A * gamma))));
  52. }
  53. // Linear trend function
  54. vector linear_trend(
  55. real k,
  56. real m,
  57. vector delta,
  58. vector t,
  59. matrix A,
  60. vector t_change
  61. ) {
  62. return (k + A * delta) .* t + (m + A * (-t_change .* delta));
  63. }
  64. }
  65. data {
  66. int T; // Number of time periods
  67. int<lower=1> K; // Number of regressors
  68. vector[T] t; // Time
  69. vector[T] cap; // Capacities for logistic trend
  70. vector[T] y; // Time series
  71. int S; // Number of changepoints
  72. vector[S] t_change; // Times of trend changepoints
  73. matrix[T,K] X; // Regressors
  74. vector[K] sigmas; // Scale on seasonality prior
  75. real<lower=0> tau; // Scale on changepoints prior
  76. int trend_indicator; // 0 for linear, 1 for logistic
  77. }
  78. transformed data {
  79. matrix[T, S] A;
  80. A = get_changepoint_matrix(t, t_change, T, S);
  81. }
  82. parameters {
  83. real k; // Base trend growth rate
  84. real m; // Trend offset
  85. vector[S] delta; // Trend rate adjustments
  86. real<lower=0> sigma_obs; // Observation noise
  87. vector[K] beta; // Regressor coefficients
  88. }
  89. transformed parameters {
  90. vector[T] trend;
  91. if (trend_indicator == 0) {
  92. trend = linear_trend(k, m, delta, t, A, t_change);
  93. } else if (trend_indicator == 1) {
  94. trend = logistic_trend(k, m, delta, t, cap, A, t_change, S);
  95. }
  96. }
  97. model {
  98. //priors
  99. k ~ normal(0, 5);
  100. m ~ normal(0, 5);
  101. delta ~ double_exponential(0, tau);
  102. sigma_obs ~ normal(0, 0.1);
  103. beta ~ normal(0, sigmas);
  104. // Likelihood
  105. y ~ normal(trend + X * beta, sigma_obs);
  106. }