prophet.stan 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. functions {
  2. matrix get_changepoint_matrix(vector t, vector t_change, int T, int S) {
  3. // Assumes t and t_change are sorted.
  4. matrix[T, S] A;
  5. row_vector[S] a_row;
  6. int cp_idx;
  7. // Start with an empty matrix.
  8. A = rep_matrix(0, T, S);
  9. a_row = rep_row_vector(0, S);
  10. cp_idx = 1;
  11. // Fill in each row of A.
  12. for (i in 1:T) {
  13. while ((cp_idx <= S) && (t[i] >= t_change[cp_idx])) {
  14. a_row[cp_idx] = 1;
  15. cp_idx += 1;
  16. }
  17. A[i] = a_row;
  18. }
  19. return A;
  20. }
  21. // Logistic trend functions
  22. vector logistic_gamma(real k, real m, vector delta, vector t_change, int S) {
  23. vector[S] gamma; // adjusted offsets, for piecewise continuity
  24. vector[S + 1] k_s; // actual rate in each segment
  25. real m_pr;
  26. // Compute the rate in each segment
  27. k_s[1] = k;
  28. for (i in 1:S) {
  29. k_s[i + 1] = k_s[i] + delta[i];
  30. }
  31. // Piecewise offsets
  32. m_pr = m; // The offset in the previous segment
  33. for (i in 1:S) {
  34. gamma[i] = (t_change[i] - m_pr) * (1 - k_s[i] / k_s[i + 1]);
  35. m_pr = m_pr + gamma[i]; // update for the next segment
  36. }
  37. return gamma;
  38. }
  39. vector logistic_trend(
  40. real k,
  41. real m,
  42. vector delta,
  43. vector t,
  44. vector cap,
  45. matrix A,
  46. vector t_change,
  47. int S,
  48. int T
  49. ) {
  50. vector[S] gamma;
  51. vector[T] Y;
  52. gamma = logistic_gamma(k, m, delta, t_change, S);
  53. for (i in 1:T) {
  54. Y[i] = cap[i] / (1 + exp(-(k + dot_product(A[i], delta)) * (t[i] - (m + dot_product(A[i], gamma)))))
  55. }
  56. return Y;
  57. }
  58. // Linear trend function
  59. vector linear_trend(
  60. real k,
  61. real m,
  62. vector delta,
  63. vector t,
  64. matrix A,
  65. vector t_change,
  66. int S,
  67. int T
  68. ) {
  69. vector[S] gamma;
  70. vector[T] Y;
  71. gamma = (-t_change .* delta);
  72. for (i in 1:T) {
  73. Y[i] = (k + dot_product(A[i], delta)) * t[i] + (m + dot_product(A[i], gamma))
  74. }
  75. return Y;
  76. }
  77. }
  78. data {
  79. int T; // Number of time periods
  80. int<lower=1> K; // Number of regressors
  81. vector[T] t; // Time
  82. vector[T] cap; // Capacities for logistic trend
  83. vector[T] y; // Time series
  84. int S; // Number of changepoints
  85. vector[S] t_change; // Times of trend changepoints
  86. matrix[T,K] X; // Regressors
  87. vector[K] sigmas; // Scale on seasonality prior
  88. real<lower=0> tau; // Scale on changepoints prior
  89. int trend_indicator; // 0 for linear, 1 for logistic
  90. }
  91. transformed data {
  92. matrix[T, S] A;
  93. A = get_changepoint_matrix(t, t_change, T, S);
  94. }
  95. parameters {
  96. real k; // Base trend growth rate
  97. real m; // Trend offset
  98. vector[S] delta; // Trend rate adjustments
  99. real<lower=0> sigma_obs; // Observation noise
  100. vector[K] beta; // Regressor coefficients
  101. }
  102. transformed parameters {
  103. vector[T] trend;
  104. vector[T] Y;
  105. if (trend_indicator == 0) {
  106. trend = linear_trend(k, m, delta, t, A, t_change, S, T);
  107. } else if (trend_indicator == 1) {
  108. trend = logistic_trend(k, m, delta, t, cap, A, t_change, S, T);
  109. }
  110. for (i in 1:T) {
  111. Y[i] = trend[i] + dot_product(X[i], beta);
  112. }
  113. }
  114. model {
  115. //priors
  116. k ~ normal(0, 5);
  117. m ~ normal(0, 5);
  118. delta ~ double_exponential(0, tau);
  119. sigma_obs ~ normal(0, 0.1);
  120. beta ~ normal(0, sigmas);
  121. // Likelihood
  122. y ~ normal(Y, sigma_obs);
  123. }