Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.

bl 8f1607cd93 Extra regressors Py před 8 roky
R c836b520ab Add m as argument to make_future_dataframe před 8 roky
docs d48b70b106 Merge remote-tracking branch 'origin/master' into v0.2 před 8 roky
examples b93f71540d Notebook example with sub-daily data před 8 roky
notebooks 8f1607cd93 Extra regressors Py před 8 roky
python 8f1607cd93 Extra regressors Py před 8 roky
.gitattributes a4bd78276c Fix repo language details před 8 roky
.gitignore 1a57d19148 Allow to build models in-place. (#100) před 8 roky
.travis.yml 63131f1bf2 Set up Travis to run the python tests. (#160) před 8 roky
LICENSE e51b42b336 Initial commit před 8 roky
PATENTS e51b42b336 Initial commit před 8 roky
README.md 719d380589 Add to the changelog / style change. před 8 roky

README.md

Prophet: Automatic Forecasting Procedure

Prophet is a procedure for forecasting time series data. It is based on an additive model where non-linear trends are fit with yearly and weekly seasonality, plus holidays. It works best with daily periodicity data with at least one year of historical data. Prophet is robust to missing data, shifts in the trend, and large outliers.

Prophet is open source software released by Facebook's Core Data Science team. It is available for download on CRAN and PyPI.

Important links

Installation in R

Prophet is a CRAN package so you can use install.packages:

# R
> install.packages('prophet')

After installation, you can get started!

Windows

On Windows, R requires a compiler so you'll need to follow the instructions provided by rstan. The key step is installing Rtools before attempting to install the package.

Installation in Python

Prophet is on PyPI, so you can use pip to install it:

# bash
$ pip install fbprophet

The major dependency that Prophet has is pystan. PyStan has its own installation instructions.

After installation, you can get started!

Windows

On Windows, PyStan requires a compiler so you'll need to follow the instructions. The key step is installing a recent C++ compiler.

Changelog

Version 0.1.1 (2017.04.17)

  • Bugfixes
  • New options for detecting yearly and weekly seasonality (now the default)

Version 0.1 (2017.02.23)

  • Initial release