123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518 |
- # Copyright (c) 2017-present, Facebook, Inc.
- # All rights reserved.
- #
- # This source code is licensed under the BSD-style license found in the
- # LICENSE file in the root directory of this source tree. An additional grant
- # of patent rights can be found in the PATENTS file in the same directory.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- from collections import defaultdict, OrderedDict
- from datetime import timedelta
- import logging
- import numpy as np
- import pandas as pd
- from fbprophet.diagnostics import prophet_copy
- from fbprophet.models import prophet_stan_model
- from fbprophet.make_holidays import get_holiday_names, make_holidays_df
- from fbprophet.plot import (
- plot,
- plot_components,
- plot_forecast_component,
- seasonality_plot_df,
- plot_weekly,
- plot_yearly,
- plot_seasonality,
- )
- logging.basicConfig()
- logger = logging.getLogger(__name__)
- try:
- import pystan # noqa F401
- except ImportError:
- logger.exception('You cannot run fbprophet without pystan installed')
- class Prophet(object):
- """Prophet forecaster.
- Parameters
- ----------
- growth: String 'linear' or 'logistic' to specify a linear or logistic
- trend.
- changepoints: List of dates at which to include potential changepoints. If
- not specified, potential changepoints are selected automatically.
- n_changepoints: Number of potential changepoints to include. Not used
- if input `changepoints` is supplied. If `changepoints` is not supplied,
- then n_changepoints potential changepoints are selected uniformly from
- the first `changepoint_range` proportion of the history.
- changepoint_range: Proportion of history in which trend changepoints will
- be estimated. Defaults to 0.8 for the first 80%. Not used if
- `changepoints` is specified.
- Not used if input `changepoints` is supplied.
- yearly_seasonality: Fit yearly seasonality.
- Can be 'auto', True, False, or a number of Fourier terms to generate.
- weekly_seasonality: Fit weekly seasonality.
- Can be 'auto', True, False, or a number of Fourier terms to generate.
- daily_seasonality: Fit daily seasonality.
- Can be 'auto', True, False, or a number of Fourier terms to generate.
- holidays: pd.DataFrame with columns holiday (string) and ds (date type)
- and optionally columns lower_window and upper_window which specify a
- range of days around the date to be included as holidays.
- lower_window=-2 will include 2 days prior to the date as holidays. Also
- optionally can have a column prior_scale specifying the prior scale for
- that holiday.
- seasonality_mode: 'additive' (default) or 'multiplicative'.
- seasonality_prior_scale: Parameter modulating the strength of the
- seasonality model. Larger values allow the model to fit larger seasonal
- fluctuations, smaller values dampen the seasonality. Can be specified
- for individual seasonalities using add_seasonality.
- holidays_prior_scale: Parameter modulating the strength of the holiday
- components model, unless overridden in the holidays input.
- changepoint_prior_scale: Parameter modulating the flexibility of the
- automatic changepoint selection. Large values will allow many
- changepoints, small values will allow few changepoints.
- mcmc_samples: Integer, if greater than 0, will do full Bayesian inference
- with the specified number of MCMC samples. If 0, will do MAP
- estimation.
- interval_width: Float, width of the uncertainty intervals provided
- for the forecast. If mcmc_samples=0, this will be only the uncertainty
- in the trend using the MAP estimate of the extrapolated generative
- model. If mcmc.samples>0, this will be integrated over all model
- parameters, which will include uncertainty in seasonality.
- uncertainty_samples: Number of simulated draws used to estimate
- uncertainty intervals.
- """
- def __init__(
- self,
- growth='linear',
- changepoints=None,
- n_changepoints=25,
- changepoint_range=0.8,
- yearly_seasonality='auto',
- weekly_seasonality='auto',
- daily_seasonality='auto',
- holidays=None,
- seasonality_mode='additive',
- seasonality_prior_scale=10.0,
- holidays_prior_scale=10.0,
- changepoint_prior_scale=0.05,
- mcmc_samples=0,
- interval_width=0.80,
- uncertainty_samples=1000,
- ):
- self.growth = growth
- self.changepoints = pd.to_datetime(changepoints)
- if self.changepoints is not None:
- self.n_changepoints = len(self.changepoints)
- self.specified_changepoints = True
- else:
- self.n_changepoints = n_changepoints
- self.specified_changepoints = False
- self.changepoint_range = changepoint_range
- self.yearly_seasonality = yearly_seasonality
- self.weekly_seasonality = weekly_seasonality
- self.daily_seasonality = daily_seasonality
- if holidays is not None:
- if not (
- isinstance(holidays, pd.DataFrame)
- and 'ds' in holidays # noqa W503
- and 'holiday' in holidays # noqa W503
- ):
- raise ValueError("holidays must be a DataFrame with 'ds' and "
- "'holiday' columns.")
- holidays['ds'] = pd.to_datetime(holidays['ds'])
- self.holidays = holidays
- self.seasonality_mode = seasonality_mode
- self.seasonality_prior_scale = float(seasonality_prior_scale)
- self.changepoint_prior_scale = float(changepoint_prior_scale)
- self.holidays_prior_scale = float(holidays_prior_scale)
- self.mcmc_samples = mcmc_samples
- self.interval_width = interval_width
- self.uncertainty_samples = uncertainty_samples
- # Set during fitting or by other methods
- self.start = None
- self.y_scale = None
- self.logistic_floor = False
- self.t_scale = None
- self.changepoints_t = None
- self.seasonalities = {}
- self.extra_regressors = OrderedDict({})
- self.country_holidays = None
- self.stan_fit = None
- self.params = {}
- self.history = None
- self.history_dates = None
- self.train_component_cols = None
- self.component_modes = None
- self.train_holiday_names = None
- self.validate_inputs()
- def validate_inputs(self):
- """Validates the inputs to Prophet."""
- if self.growth not in ('linear', 'logistic'):
- raise ValueError(
- "Parameter 'growth' should be 'linear' or 'logistic'.")
- if ((self.changepoint_range < 0) or (self.changepoint_range > 1)):
- raise ValueError("Parameter 'changepoint_range' must be in [0, 1]")
- if self.holidays is not None:
- has_lower = 'lower_window' in self.holidays
- has_upper = 'upper_window' in self.holidays
- if has_lower + has_upper == 1:
- raise ValueError('Holidays must have both lower_window and ' +
- 'upper_window, or neither')
- if has_lower:
- if self.holidays['lower_window'].max() > 0:
- raise ValueError('Holiday lower_window should be <= 0')
- if self.holidays['upper_window'].min() < 0:
- raise ValueError('Holiday upper_window should be >= 0')
- for h in self.holidays['holiday'].unique():
- self.validate_column_name(h, check_holidays=False)
- if self.seasonality_mode not in ['additive', 'multiplicative']:
- raise ValueError(
- "seasonality_mode must be 'additive' or 'multiplicative'"
- )
- def validate_column_name(self, name, check_holidays=True,
- check_seasonalities=True, check_regressors=True):
- """Validates the name of a seasonality, holiday, or regressor.
- Parameters
- ----------
- name: string
- check_holidays: bool check if name already used for holiday
- check_seasonalities: bool check if name already used for seasonality
- check_regressors: bool check if name already used for regressor
- """
- if '_delim_' in name:
- raise ValueError('Name cannot contain "_delim_"')
- reserved_names = [
- 'trend', 'additive_terms', 'daily', 'weekly', 'yearly',
- 'holidays', 'zeros', 'extra_regressors_additive', 'yhat',
- 'extra_regressors_multiplicative', 'multiplicative_terms',
- ]
- rn_l = [n + '_lower' for n in reserved_names]
- rn_u = [n + '_upper' for n in reserved_names]
- reserved_names.extend(rn_l)
- reserved_names.extend(rn_u)
- reserved_names.extend([
- 'ds', 'y', 'cap', 'floor', 'y_scaled', 'cap_scaled'])
- if name in reserved_names:
- raise ValueError('Name "{}" is reserved.'.format(name))
- if (check_holidays and self.holidays is not None and
- name in self.holidays['holiday'].unique()):
- raise ValueError(
- 'Name "{}" already used for a holiday.'.format(name))
- if (check_holidays and self.country_holidays is not None and
- name in get_holiday_names(self.country_holidays)):
- raise ValueError(
- 'Name "{}" is a holiday name in {}.'.format(name, self.country_holidays))
- if check_seasonalities and name in self.seasonalities:
- raise ValueError(
- 'Name "{}" already used for a seasonality.'.format(name))
- if check_regressors and name in self.extra_regressors:
- raise ValueError(
- 'Name "{}" already used for an added regressor.'.format(name))
- def setup_dataframe(self, df, initialize_scales=False):
- """Prepare dataframe for fitting or predicting.
- Adds a time index and scales y. Creates auxiliary columns 't', 't_ix',
- 'y_scaled', and 'cap_scaled'. These columns are used during both
- fitting and predicting.
- Parameters
- ----------
- df: pd.DataFrame with columns ds, y, and cap if logistic growth. Any
- specified additional regressors must also be present.
- initialize_scales: Boolean set scaling factors in self from df.
- Returns
- -------
- pd.DataFrame prepared for fitting or predicting.
- """
- if 'y' in df:
- df['y'] = pd.to_numeric(df['y'])
- if np.isinf(df['y'].values).any():
- raise ValueError('Found infinity in column y.')
- df['ds'] = pd.to_datetime(df['ds'])
- if df['ds'].isnull().any():
- raise ValueError('Found NaN in column ds.')
- for name in self.extra_regressors:
- if name not in df:
- raise ValueError(
- 'Regressor "{}" missing from dataframe'.format(name))
- df = df.sort_values('ds')
- df.reset_index(inplace=True, drop=True)
- self.initialize_scales(initialize_scales, df)
- if self.logistic_floor:
- if 'floor' not in df:
- raise ValueError("Expected column 'floor'.")
- else:
- df['floor'] = 0
- if self.growth == 'logistic':
- if 'cap' not in df:
- raise ValueError(
- "Capacities must be supplied for logistic growth in "
- "column 'cap'"
- )
- df['cap_scaled'] = (df['cap'] - df['floor']) / self.y_scale
- df['t'] = (df['ds'] - self.start) / self.t_scale
- if 'y' in df:
- df['y_scaled'] = (df['y'] - df['floor']) / self.y_scale
- for name, props in self.extra_regressors.items():
- df[name] = pd.to_numeric(df[name])
- df[name] = ((df[name] - props['mu']) / props['std'])
- if df[name].isnull().any():
- raise ValueError('Found NaN in column ' + name)
- return df
- def initialize_scales(self, initialize_scales, df):
- """Initialize model scales.
- Sets model scaling factors using df.
- Parameters
- ----------
- initialize_scales: Boolean set the scales or not.
- df: pd.DataFrame for setting scales.
- """
- if not initialize_scales:
- return
- if self.growth == 'logistic' and 'floor' in df:
- self.logistic_floor = True
- floor = df['floor']
- else:
- floor = 0.
- self.y_scale = (df['y'] - floor).abs().max()
- if self.y_scale == 0:
- self.y_scale = 1
- self.start = df['ds'].min()
- self.t_scale = df['ds'].max() - self.start
- for name, props in self.extra_regressors.items():
- standardize = props['standardize']
- n_vals = len(df[name].unique())
- if n_vals < 2:
- standardize = False
- if standardize == 'auto':
- if set(df[name].unique()) == set([1, 0]):
- # Don't standardize binary variables.
- standardize = False
- else:
- standardize = True
- if standardize:
- mu = df[name].mean()
- std = df[name].std()
- self.extra_regressors[name]['mu'] = mu
- self.extra_regressors[name]['std'] = std
- def set_changepoints(self):
- """Set changepoints
- Sets m$changepoints to the dates of changepoints. Either:
- 1) The changepoints were passed in explicitly.
- A) They are empty.
- B) They are not empty, and need validation.
- 2) We are generating a grid of them.
- 3) The user prefers no changepoints be used.
- """
- if self.changepoints is not None:
- if len(self.changepoints) == 0:
- pass
- else:
- too_low = min(self.changepoints) < self.history['ds'].min()
- too_high = max(self.changepoints) > self.history['ds'].max()
- if too_low or too_high:
- raise ValueError(
- 'Changepoints must fall within training data.')
- else:
- # Place potential changepoints evenly through first
- # changepoint_range proportion of the history
- hist_size = np.floor(
- self.history.shape[0] * self.changepoint_range)
- if self.n_changepoints + 1 > hist_size:
- self.n_changepoints = hist_size - 1
- logger.info(
- 'n_changepoints greater than number of observations.'
- 'Using {}.'.format(self.n_changepoints)
- )
- if self.n_changepoints > 0:
- cp_indexes = (
- np.linspace(0, hist_size - 1, self.n_changepoints + 1)
- .round()
- .astype(np.int)
- )
- self.changepoints = (
- self.history.iloc[cp_indexes]['ds'].tail(-1)
- )
- else:
- # set empty changepoints
- self.changepoints = []
- if len(self.changepoints) > 0:
- self.changepoints_t = np.sort(np.array(
- (self.changepoints - self.start) / self.t_scale))
- else:
- self.changepoints_t = np.array([0]) # dummy changepoint
- @staticmethod
- def fourier_series(dates, period, series_order):
- """Provides Fourier series components with the specified frequency
- and order.
- Parameters
- ----------
- dates: pd.Series containing timestamps.
- period: Number of days of the period.
- series_order: Number of components.
- Returns
- -------
- Matrix with seasonality features.
- """
- # convert to days since epoch
- t = np.array(
- (dates - pd.datetime(1970, 1, 1))
- .dt.total_seconds()
- .astype(np.float)
- ) / (3600 * 24.)
- return np.column_stack([
- fun((2.0 * (i + 1) * np.pi * t / period))
- for i in range(series_order)
- for fun in (np.sin, np.cos)
- ])
- @classmethod
- def make_seasonality_features(cls, dates, period, series_order, prefix):
- """Data frame with seasonality features.
- Parameters
- ----------
- cls: Prophet class.
- dates: pd.Series containing timestamps.
- period: Number of days of the period.
- series_order: Number of components.
- prefix: Column name prefix.
- Returns
- -------
- pd.DataFrame with seasonality features.
- """
- features = cls.fourier_series(dates, period, series_order)
- columns = [
- '{}_delim_{}'.format(prefix, i + 1)
- for i in range(features.shape[1])
- ]
- return pd.DataFrame(features, columns=columns)
- def construct_holiday_dataframe(self, dates):
- """Construct a dataframe of holiday dates.
-
- Will combine self.holidays with the built-in country holidays
- corresponding to input dates, if self.country_holidays is set.
-
- Parameters
- ----------
- dates: pd.Series containing timestamps used for computing seasonality.
-
- Returns
- -------
- dataframe of holiday dates, in holiday dataframe format used in
- initialization.
- """
- all_holidays = pd.DataFrame()
- if self.holidays is not None:
- all_holidays = self.holidays.copy()
- if self.country_holidays is not None:
- year_list = list({x.year for x in dates})
- country_holidays_df = make_holidays_df(
- year_list=year_list, country=self.country_holidays
- )
- all_holidays = pd.concat((all_holidays, country_holidays_df), sort=False)
- all_holidays.reset_index(drop=True, inplace=True)
- # If the model has already been fit with a certain set of holidays,
- # make sure we are using those same ones.
- if self.train_holiday_names is not None:
- # Remove holiday names didn't show up in fit
- index_to_drop = all_holidays.index[
- np.logical_not(
- all_holidays.holiday.isin(self.train_holiday_names)
- )
- ]
- all_holidays = all_holidays.drop(index_to_drop)
- # Add holiday names in fit but not in predict with ds as NA
- holidays_to_add = pd.DataFrame({
- 'holiday': self.train_holiday_names[
- np.logical_not(self.train_holiday_names.isin(all_holidays.holiday))
- ]
- })
- all_holidays = pd.concat((all_holidays, holidays_to_add), sort=False)
- all_holidays.reset_index(drop=True, inplace=True)
- return all_holidays
- def make_holiday_features(self, dates, holidays):
- """Construct a dataframe of holiday features.
- Parameters
- ----------
- dates: pd.Series containing timestamps used for computing seasonality.
- holidays: pd.Dataframe containing holidays, as returned by
- construct_holiday_dataframe.
- Returns
- -------
- holiday_features: pd.DataFrame with a column for each holiday.
- prior_scale_list: List of prior scales for each holiday column.
- holiday_names: List of names of holidays
- """
- # Holds columns of our future matrix.
- expanded_holidays = defaultdict(lambda: np.zeros(dates.shape[0]))
- prior_scales = {}
- # Makes an index so we can perform `get_loc` below.
- # Strip to just dates.
- row_index = pd.DatetimeIndex(dates.apply(lambda x: x.date()))
- for _ix, row in holidays.iterrows():
- dt = row.ds.date()
- try:
- lw = int(row.get('lower_window', 0))
- uw = int(row.get('upper_window', 0))
- except ValueError:
- lw = 0
- uw = 0
- ps = float(row.get('prior_scale', self.holidays_prior_scale))
- if np.isnan(ps):
- ps = float(self.holidays_prior_scale)
- if (
- row.holiday in prior_scales and prior_scales[row.holiday] != ps
- ):
- raise ValueError(
- 'Holiday {} does not have consistent prior scale '
- 'specification.'.format(row.holiday))
- if ps <= 0:
- raise ValueError('Prior scale must be > 0')
- prior_scales[row.holiday] = ps
- for offset in range(lw, uw + 1):
- occurrence = dt + timedelta(days=offset)
- try:
- loc = row_index.get_loc(occurrence)
- except KeyError:
- loc = None
- key = '{}_delim_{}{}'.format(
- row.holiday,
- '+' if offset >= 0 else '-',
- abs(offset)
- )
- if loc is not None:
- expanded_holidays[key][loc] = 1.
- else:
- # Access key to generate value
- expanded_holidays[key]
- holiday_features = pd.DataFrame(expanded_holidays)
- # Make sure column order is consistent
- holiday_features = holiday_features[sorted(holiday_features.columns.tolist())]
- prior_scale_list = [
- prior_scales[h.split('_delim_')[0]]
- for h in holiday_features.columns
- ]
- holiday_names = list(prior_scales.keys())
- # Store holiday names used in fit
- if self.train_holiday_names is None:
- self.train_holiday_names = pd.Series(holiday_names)
- return holiday_features, prior_scale_list, holiday_names
- def add_regressor(
- self, name, prior_scale=None, standardize='auto', mode=None
- ):
- """Add an additional regressor to be used for fitting and predicting.
- The dataframe passed to `fit` and `predict` will have a column with the
- specified name to be used as a regressor. When standardize='auto', the
- regressor will be standardized unless it is binary. The regression
- coefficient is given a prior with the specified scale parameter.
- Decreasing the prior scale will add additional regularization. If no
- prior scale is provided, self.holidays_prior_scale will be used.
- Mode can be specified as either 'additive' or 'multiplicative'. If not
- specified, self.seasonality_mode will be used. 'additive' means the
- effect of the regressor will be added to the trend, 'multiplicative'
- means it will multiply the trend.
- Parameters
- ----------
- name: string name of the regressor.
- prior_scale: optional float scale for the normal prior. If not
- provided, self.holidays_prior_scale will be used.
- standardize: optional, specify whether this regressor will be
- standardized prior to fitting. Can be 'auto' (standardize if not
- binary), True, or False.
- mode: optional, 'additive' or 'multiplicative'. Defaults to
- self.seasonality_mode.
- Returns
- -------
- The prophet object.
- """
- if self.history is not None:
- raise Exception(
- "Regressors must be added prior to model fitting.")
- self.validate_column_name(name, check_regressors=False)
- if prior_scale is None:
- prior_scale = float(self.holidays_prior_scale)
- if mode is None:
- mode = self.seasonality_mode
- if prior_scale <= 0:
- raise ValueError('Prior scale must be > 0')
- if mode not in ['additive', 'multiplicative']:
- raise ValueError("mode must be 'additive' or 'multiplicative'")
- self.extra_regressors[name] = {
- 'prior_scale': prior_scale,
- 'standardize': standardize,
- 'mu': 0.,
- 'std': 1.,
- 'mode': mode,
- }
- return self
- def add_seasonality(
- self, name, period, fourier_order, prior_scale=None, mode=None
- ):
- """Add a seasonal component with specified period, number of Fourier
- components, and prior scale.
- Increasing the number of Fourier components allows the seasonality to
- change more quickly (at risk of overfitting). Default values for yearly
- and weekly seasonalities are 10 and 3 respectively.
- Increasing prior scale will allow this seasonality component more
- flexibility, decreasing will dampen it. If not provided, will use the
- seasonality_prior_scale provided on Prophet initialization (defaults
- to 10).
- Mode can be specified as either 'additive' or 'multiplicative'. If not
- specified, self.seasonality_mode will be used (defaults to additive).
- Additive means the seasonality will be added to the trend,
- multiplicative means it will multiply the trend.
- Parameters
- ----------
- name: string name of the seasonality component.
- period: float number of days in one period.
- fourier_order: int number of Fourier components to use.
- prior_scale: optional float prior scale for this component.
- mode: optional 'additive' or 'multiplicative'
- Returns
- -------
- The prophet object.
- """
- if self.history is not None:
- raise Exception(
- "Seasonality must be added prior to model fitting.")
- if name not in ['daily', 'weekly', 'yearly']:
- # Allow overwriting built-in seasonalities
- self.validate_column_name(name, check_seasonalities=False)
- if prior_scale is None:
- ps = self.seasonality_prior_scale
- else:
- ps = float(prior_scale)
- if ps <= 0:
- raise ValueError('Prior scale must be > 0')
- if mode is None:
- mode = self.seasonality_mode
- if mode not in ['additive', 'multiplicative']:
- raise ValueError("mode must be 'additive' or 'multiplicative'")
- self.seasonalities[name] = {
- 'period': period,
- 'fourier_order': fourier_order,
- 'prior_scale': ps,
- 'mode': mode,
- }
- return self
- def add_country_holidays(self, country_name):
- """Add in built-in holidays for the specified country.
- These holidays will be included in addition to any specified on model
- initialization.
- Holidays will be calculated for arbitrary date ranges in the history
- and future. See the online documentation for the list of countries with
- built-in holidays.
- Built-in country holidays can only be set for a single country.
- Parameters
- ----------
- country_name: Name of the country, like 'UnitedStates' or 'US'
- Returns
- -------
- The prophet object.
- """
- if self.history is not None:
- raise Exception(
- "Country holidays must be added prior to model fitting."
- )
- # Validate names.
- for name in get_holiday_names(country_name):
- # Allow merging with existing holidays
- self.validate_column_name(name, check_holidays=False)
- # Set the holidays.
- if self.country_holidays is not None:
- logger.warning(
- 'Changing country holidays from {} to {}'.format(
- self.country_holidays, country_name
- )
- )
- self.country_holidays = country_name
- return self
- def make_all_seasonality_features(self, df):
- """Dataframe with seasonality features.
- Includes seasonality features, holiday features, and added regressors.
- Parameters
- ----------
- df: pd.DataFrame with dates for computing seasonality features and any
- added regressors.
- Returns
- -------
- pd.DataFrame with regression features.
- list of prior scales for each column of the features dataframe.
- Dataframe with indicators for which regression components correspond to
- which columns.
- Dictionary with keys 'additive' and 'multiplicative' listing the
- component names for each mode of seasonality.
- """
- seasonal_features = []
- prior_scales = []
- modes = {'additive': [], 'multiplicative': []}
- # Seasonality features
- for name, props in self.seasonalities.items():
- features = self.make_seasonality_features(
- df['ds'],
- props['period'],
- props['fourier_order'],
- name,
- )
- seasonal_features.append(features)
- prior_scales.extend(
- [props['prior_scale']] * features.shape[1])
- modes[props['mode']].append(name)
- # Holiday features
- holidays = self.construct_holiday_dataframe(df['ds'])
- if len(holidays) > 0:
- features, holiday_priors, holiday_names = (
- self.make_holiday_features(df['ds'], holidays)
- )
- seasonal_features.append(features)
- prior_scales.extend(holiday_priors)
- modes[self.seasonality_mode].extend(holiday_names)
- # Additional regressors
- for name, props in self.extra_regressors.items():
- seasonal_features.append(pd.DataFrame(df[name]))
- prior_scales.append(props['prior_scale'])
- modes[props['mode']].append(name)
- # Dummy to prevent empty X
- if len(seasonal_features) == 0:
- seasonal_features.append(
- pd.DataFrame({'zeros': np.zeros(df.shape[0])}))
- prior_scales.append(1.)
- seasonal_features = pd.concat(seasonal_features, axis=1)
- component_cols, modes = self.regressor_column_matrix(
- seasonal_features, modes
- )
- return seasonal_features, prior_scales, component_cols, modes
- def regressor_column_matrix(self, seasonal_features, modes):
- """Dataframe indicating which columns of the feature matrix correspond
- to which seasonality/regressor components.
- Includes combination components, like 'additive_terms'. These
- combination components will be added to the 'modes' input.
- Parameters
- ----------
- seasonal_features: Constructed seasonal features dataframe
- modes: Dictionary with keys 'additive' and 'multiplicative' listing the
- component names for each mode of seasonality.
- Returns
- -------
- component_cols: A binary indicator dataframe with columns seasonal
- components and rows columns in seasonal_features. Entry is 1 if
- that columns is used in that component.
- modes: Updated input with combination components.
- """
- components = pd.DataFrame({
- 'col': np.arange(seasonal_features.shape[1]),
- 'component': [
- x.split('_delim_')[0] for x in seasonal_features.columns
- ],
- })
- # Add total for holidays
- if self.train_holiday_names is not None:
- components = self.add_group_component(
- components, 'holidays', self.train_holiday_names.unique())
- # Add totals additive and multiplicative components, and regressors
- for mode in ['additive', 'multiplicative']:
- components = self.add_group_component(
- components, mode + '_terms', modes[mode]
- )
- regressors_by_mode = [
- r for r, props in self.extra_regressors.items()
- if props['mode'] == mode
- ]
- components = self.add_group_component(
- components, 'extra_regressors_' + mode, regressors_by_mode)
- # Add combination components to modes
- modes[mode].append(mode + '_terms')
- modes[mode].append('extra_regressors_' + mode)
- # After all of the additive/multiplicative groups have been added,
- modes[self.seasonality_mode].append('holidays')
- # Convert to a binary matrix
- component_cols = pd.crosstab(
- components['col'], components['component'],
- ).sort_index(level='col')
- # Add columns for additive and multiplicative terms, if missing
- for name in ['additive_terms', 'multiplicative_terms']:
- if name not in component_cols:
- component_cols[name] = 0
- # Remove the placeholder
- component_cols.drop('zeros', axis=1, inplace=True, errors='ignore')
- # Validation
- if (
- max(component_cols['additive_terms']
- + component_cols['multiplicative_terms']) > 1
- ):
- raise Exception('A bug occurred in seasonal components.')
- # Compare to the training, if set.
- if self.train_component_cols is not None:
- component_cols = component_cols[self.train_component_cols.columns]
- if not component_cols.equals(self.train_component_cols):
- raise Exception('A bug occurred in constructing regressors.')
- return component_cols, modes
- def add_group_component(self, components, name, group):
- """Adds a component with given name that contains all of the components
- in group.
- Parameters
- ----------
- components: Dataframe with components.
- name: Name of new group component.
- group: List of components that form the group.
- Returns
- -------
- Dataframe with components.
- """
- new_comp = components[components['component'].isin(set(group))].copy()
- group_cols = new_comp['col'].unique()
- if len(group_cols) > 0:
- new_comp = pd.DataFrame({'col': group_cols, 'component': name})
- components = components.append(new_comp)
- return components
- def parse_seasonality_args(self, name, arg, auto_disable, default_order):
- """Get number of fourier components for built-in seasonalities.
- Parameters
- ----------
- name: string name of the seasonality component.
- arg: 'auto', True, False, or number of fourier components as provided.
- auto_disable: bool if seasonality should be disabled when 'auto'.
- default_order: int default fourier order
- Returns
- -------
- Number of fourier components, or 0 for disabled.
- """
- if arg == 'auto':
- fourier_order = 0
- if name in self.seasonalities:
- logger.info(
- 'Found custom seasonality named "{name}", '
- 'disabling built-in {name} seasonality.'.format(name=name)
- )
- elif auto_disable:
- logger.info(
- 'Disabling {name} seasonality. Run prophet with '
- '{name}_seasonality=True to override this.'.format(
- name=name)
- )
- else:
- fourier_order = default_order
- elif arg is True:
- fourier_order = default_order
- elif arg is False:
- fourier_order = 0
- else:
- fourier_order = int(arg)
- return fourier_order
- def set_auto_seasonalities(self):
- """Set seasonalities that were left on auto.
- Turns on yearly seasonality if there is >=2 years of history.
- Turns on weekly seasonality if there is >=2 weeks of history, and the
- spacing between dates in the history is <7 days.
- Turns on daily seasonality if there is >=2 days of history, and the
- spacing between dates in the history is <1 day.
- """
- first = self.history['ds'].min()
- last = self.history['ds'].max()
- dt = self.history['ds'].diff()
- min_dt = dt.iloc[dt.nonzero()[0]].min()
- # Yearly seasonality
- yearly_disable = last - first < pd.Timedelta(days=730)
- fourier_order = self.parse_seasonality_args(
- 'yearly', self.yearly_seasonality, yearly_disable, 10)
- if fourier_order > 0:
- self.seasonalities['yearly'] = {
- 'period': 365.25,
- 'fourier_order': fourier_order,
- 'prior_scale': self.seasonality_prior_scale,
- 'mode': self.seasonality_mode,
- }
- # Weekly seasonality
- weekly_disable = ((last - first < pd.Timedelta(weeks=2)) or
- (min_dt >= pd.Timedelta(weeks=1)))
- fourier_order = self.parse_seasonality_args(
- 'weekly', self.weekly_seasonality, weekly_disable, 3)
- if fourier_order > 0:
- self.seasonalities['weekly'] = {
- 'period': 7,
- 'fourier_order': fourier_order,
- 'prior_scale': self.seasonality_prior_scale,
- 'mode': self.seasonality_mode,
- }
- # Daily seasonality
- daily_disable = ((last - first < pd.Timedelta(days=2)) or
- (min_dt >= pd.Timedelta(days=1)))
- fourier_order = self.parse_seasonality_args(
- 'daily', self.daily_seasonality, daily_disable, 4)
- if fourier_order > 0:
- self.seasonalities['daily'] = {
- 'period': 1,
- 'fourier_order': fourier_order,
- 'prior_scale': self.seasonality_prior_scale,
- 'mode': self.seasonality_mode,
- }
- @staticmethod
- def linear_growth_init(df):
- """Initialize linear growth.
- Provides a strong initialization for linear growth by calculating the
- growth and offset parameters that pass the function through the first
- and last points in the time series.
- Parameters
- ----------
- df: pd.DataFrame with columns ds (date), y_scaled (scaled time series),
- and t (scaled time).
- Returns
- -------
- A tuple (k, m) with the rate (k) and offset (m) of the linear growth
- function.
- """
- i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
- T = df['t'].iloc[i1] - df['t'].iloc[i0]
- k = (df['y_scaled'].iloc[i1] - df['y_scaled'].iloc[i0]) / T
- m = df['y_scaled'].iloc[i0] - k * df['t'].iloc[i0]
- return (k, m)
- @staticmethod
- def logistic_growth_init(df):
- """Initialize logistic growth.
- Provides a strong initialization for logistic growth by calculating the
- growth and offset parameters that pass the function through the first
- and last points in the time series.
- Parameters
- ----------
- df: pd.DataFrame with columns ds (date), cap_scaled (scaled capacity),
- y_scaled (scaled time series), and t (scaled time).
- Returns
- -------
- A tuple (k, m) with the rate (k) and offset (m) of the logistic growth
- function.
- """
- i0, i1 = df['ds'].idxmin(), df['ds'].idxmax()
- T = df['t'].iloc[i1] - df['t'].iloc[i0]
- # Force valid values, in case y > cap or y < 0
- C0 = df['cap_scaled'].iloc[i0]
- C1 = df['cap_scaled'].iloc[i1]
- y0 = max(0.01 * C0, min(0.99 * C0, df['y_scaled'].iloc[i0]))
- y1 = max(0.01 * C1, min(0.99 * C1, df['y_scaled'].iloc[i1]))
- r0 = C0 / y0
- r1 = C1 / y1
- if abs(r0 - r1) <= 0.01:
- r0 = 1.05 * r0
- L0 = np.log(r0 - 1)
- L1 = np.log(r1 - 1)
- # Initialize the offset
- m = L0 * T / (L0 - L1)
- # And the rate
- k = (L0 - L1) / T
- return (k, m)
- def fit(self, df, **kwargs):
- """Fit the Prophet model.
- This sets self.params to contain the fitted model parameters. It is a
- dictionary parameter names as keys and the following items:
- k (Mx1 array): M posterior samples of the initial slope.
- m (Mx1 array): The initial intercept.
- delta (MxN array): The slope change at each of N changepoints.
- beta (MxK matrix): Coefficients for K seasonality features.
- sigma_obs (Mx1 array): Noise level.
- Note that M=1 if MAP estimation.
- Parameters
- ----------
- df: pd.DataFrame containing the history. Must have columns ds (date
- type) and y, the time series. If self.growth is 'logistic', then
- df must also have a column cap that specifies the capacity at
- each ds.
- kwargs: Additional arguments passed to the optimizing or sampling
- functions in Stan.
- Returns
- -------
- The fitted Prophet object.
- """
- if self.history is not None:
- raise Exception('Prophet object can only be fit once. '
- 'Instantiate a new object.')
- if ('ds' not in df) or ('y' not in df):
- raise ValueError(
- "Dataframe must have columns 'ds' and 'y' with the dates and "
- "values respectively."
- )
- history = df[df['y'].notnull()].copy()
- if history.shape[0] < 2:
- raise ValueError('Dataframe has less than 2 non-NaN rows.')
- self.history_dates = pd.to_datetime(df['ds']).sort_values()
- history = self.setup_dataframe(history, initialize_scales=True)
- self.history = history
- self.set_auto_seasonalities()
- seasonal_features, prior_scales, component_cols, modes = (
- self.make_all_seasonality_features(history))
- self.train_component_cols = component_cols
- self.component_modes = modes
- self.set_changepoints()
- dat = {
- 'T': history.shape[0],
- 'K': seasonal_features.shape[1],
- 'S': len(self.changepoints_t),
- 'y': history['y_scaled'],
- 't': history['t'],
- 't_change': self.changepoints_t,
- 'X': seasonal_features,
- 'sigmas': prior_scales,
- 'tau': self.changepoint_prior_scale,
- 'trend_indicator': int(self.growth == 'logistic'),
- 's_a': component_cols['additive_terms'],
- 's_m': component_cols['multiplicative_terms'],
- }
- if self.growth == 'linear':
- dat['cap'] = np.zeros(self.history.shape[0])
- kinit = self.linear_growth_init(history)
- else:
- dat['cap'] = history['cap_scaled']
- kinit = self.logistic_growth_init(history)
- model = prophet_stan_model
- def stan_init():
- return {
- 'k': kinit[0],
- 'm': kinit[1],
- 'delta': np.zeros(len(self.changepoints_t)),
- 'beta': np.zeros(seasonal_features.shape[1]),
- 'sigma_obs': 1,
- }
- if (
- (history['y'].min() == history['y'].max())
- and self.growth == 'linear'
- ):
- # Nothing to fit.
- self.params = stan_init()
- self.params['sigma_obs'] = 1e-9
- for par in self.params:
- self.params[par] = np.array([self.params[par]])
- elif self.mcmc_samples > 0:
- stan_fit = model.sampling(
- dat,
- init=stan_init,
- iter=self.mcmc_samples,
- **kwargs
- )
- for par in stan_fit.model_pars:
- self.params[par] = stan_fit[par]
- else:
- try:
- params = model.optimizing(
- dat, init=stan_init, iter=1e4, **kwargs)
- except RuntimeError:
- kwargs.pop('algorithm', None)
- params = model.optimizing(
- dat, init=stan_init, iter=1e4, algorithm='Newton',
- **kwargs
- )
- for par in params:
- self.params[par] = params[par].reshape((1, -1))
- # If no changepoints were requested, replace delta with 0s
- if len(self.changepoints) == 0:
- # Fold delta into the base rate k
- self.params['k'] = self.params['k'] + self.params['delta']
- self.params['delta'] = np.zeros(self.params['delta'].shape)
- return self
- def predict(self, df=None):
- """Predict using the prophet model.
- Parameters
- ----------
- df: pd.DataFrame with dates for predictions (column ds), and capacity
- (column cap) if logistic growth. If not provided, predictions are
- made on the history.
- Returns
- -------
- A pd.DataFrame with the forecast components.
- """
- if df is None:
- df = self.history.copy()
- else:
- if df.shape[0] == 0:
- raise ValueError('Dataframe has no rows.')
- df = self.setup_dataframe(df.copy())
- df['trend'] = self.predict_trend(df)
- seasonal_components = self.predict_seasonal_components(df)
- intervals = self.predict_uncertainty(df)
- # Drop columns except ds, cap, floor, and trend
- cols = ['ds', 'trend']
- if 'cap' in df:
- cols.append('cap')
- if self.logistic_floor:
- cols.append('floor')
- # Add in forecast components
- df2 = pd.concat((df[cols], intervals, seasonal_components), axis=1)
- df2['yhat'] = (
- df2['trend'] * (1 + df2['multiplicative_terms'])
- + df2['additive_terms']
- )
- return df2
- @staticmethod
- def piecewise_linear(t, deltas, k, m, changepoint_ts):
- """Evaluate the piecewise linear function.
- Parameters
- ----------
- t: np.array of times on which the function is evaluated.
- deltas: np.array of rate changes at each changepoint.
- k: Float initial rate.
- m: Float initial offset.
- changepoint_ts: np.array of changepoint times.
- Returns
- -------
- Vector y(t).
- """
- # Intercept changes
- gammas = -changepoint_ts * deltas
- # Get cumulative slope and intercept at each t
- k_t = k * np.ones_like(t)
- m_t = m * np.ones_like(t)
- for s, t_s in enumerate(changepoint_ts):
- indx = t >= t_s
- k_t[indx] += deltas[s]
- m_t[indx] += gammas[s]
- return k_t * t + m_t
- @staticmethod
- def piecewise_logistic(t, cap, deltas, k, m, changepoint_ts):
- """Evaluate the piecewise logistic function.
- Parameters
- ----------
- t: np.array of times on which the function is evaluated.
- cap: np.array of capacities at each t.
- deltas: np.array of rate changes at each changepoint.
- k: Float initial rate.
- m: Float initial offset.
- changepoint_ts: np.array of changepoint times.
- Returns
- -------
- Vector y(t).
- """
- # Compute offset changes
- k_cum = np.concatenate((np.atleast_1d(k), np.cumsum(deltas) + k))
- gammas = np.zeros(len(changepoint_ts))
- for i, t_s in enumerate(changepoint_ts):
- gammas[i] = (
- (t_s - m - np.sum(gammas))
- * (1 - k_cum[i] / k_cum[i + 1]) # noqa W503
- )
- # Get cumulative rate and offset at each t
- k_t = k * np.ones_like(t)
- m_t = m * np.ones_like(t)
- for s, t_s in enumerate(changepoint_ts):
- indx = t >= t_s
- k_t[indx] += deltas[s]
- m_t[indx] += gammas[s]
- return cap / (1 + np.exp(-k_t * (t - m_t)))
- def predict_trend(self, df):
- """Predict trend using the prophet model.
- Parameters
- ----------
- df: Prediction dataframe.
- Returns
- -------
- Vector with trend on prediction dates.
- """
- k = np.nanmean(self.params['k'])
- m = np.nanmean(self.params['m'])
- deltas = np.nanmean(self.params['delta'], axis=0)
- t = np.array(df['t'])
- if self.growth == 'linear':
- trend = self.piecewise_linear(t, deltas, k, m, self.changepoints_t)
- else:
- cap = df['cap_scaled']
- trend = self.piecewise_logistic(
- t, cap, deltas, k, m, self.changepoints_t)
- return trend * self.y_scale + df['floor']
- def predict_seasonal_components(self, df):
- """Predict seasonality components, holidays, and added regressors.
- Parameters
- ----------
- df: Prediction dataframe.
- Returns
- -------
- Dataframe with seasonal components.
- """
- seasonal_features, _, component_cols, _ = (
- self.make_all_seasonality_features(df)
- )
- lower_p = 100 * (1.0 - self.interval_width) / 2
- upper_p = 100 * (1.0 + self.interval_width) / 2
- X = seasonal_features.values
- data = {}
- for component in component_cols.columns:
- beta_c = self.params['beta'] * component_cols[component].values
- comp = np.matmul(X, beta_c.transpose())
- if component in self.component_modes['additive']:
- comp *= self.y_scale
- data[component] = np.nanmean(comp, axis=1)
- data[component + '_lower'] = np.nanpercentile(
- comp, lower_p, axis=1,
- )
- data[component + '_upper'] = np.nanpercentile(
- comp, upper_p, axis=1,
- )
- return pd.DataFrame(data)
- def sample_posterior_predictive(self, df):
- """Prophet posterior predictive samples.
- Parameters
- ----------
- df: Prediction dataframe.
- Returns
- -------
- Dictionary with posterior predictive samples for the forecast yhat and
- for the trend component.
- """
- n_iterations = self.params['k'].shape[0]
- samp_per_iter = max(1, int(np.ceil(
- self.uncertainty_samples / float(n_iterations)
- )))
- # Generate seasonality features once so we can re-use them.
- seasonal_features, _, component_cols, _ = (
- self.make_all_seasonality_features(df)
- )
- sim_values = {'yhat': [], 'trend': []}
- for i in range(n_iterations):
- for _j in range(samp_per_iter):
- sim = self.sample_model(
- df=df,
- seasonal_features=seasonal_features,
- iteration=i,
- s_a=component_cols['additive_terms'],
- s_m=component_cols['multiplicative_terms'],
- )
- for key in sim_values:
- sim_values[key].append(sim[key])
- for k, v in sim_values.items():
- sim_values[k] = np.column_stack(v)
- return sim_values
- def predictive_samples(self, df):
- """Sample from the posterior predictive distribution.
- Parameters
- ----------
- df: Dataframe with dates for predictions (column ds), and capacity
- (column cap) if logistic growth.
- Returns
- -------
- Dictionary with keys "trend" and "yhat" containing
- posterior predictive samples for that component.
- """
- df = self.setup_dataframe(df.copy())
- sim_values = self.sample_posterior_predictive(df)
- return sim_values
- def predict_uncertainty(self, df):
- """Prediction intervals for yhat and trend.
- Parameters
- ----------
- df: Prediction dataframe.
- Returns
- -------
- Dataframe with uncertainty intervals.
- """
- sim_values = self.sample_posterior_predictive(df)
- lower_p = 100 * (1.0 - self.interval_width) / 2
- upper_p = 100 * (1.0 + self.interval_width) / 2
- series = {}
- for key in ['yhat', 'trend']:
- series['{}_lower'.format(key)] = np.nanpercentile(
- sim_values[key], lower_p, axis=1)
- series['{}_upper'.format(key)] = np.nanpercentile(
- sim_values[key], upper_p, axis=1)
- return pd.DataFrame(series)
- def sample_model(self, df, seasonal_features, iteration, s_a, s_m):
- """Simulate observations from the extrapolated generative model.
- Parameters
- ----------
- df: Prediction dataframe.
- seasonal_features: pd.DataFrame of seasonal features.
- iteration: Int sampling iteration to use parameters from.
- s_a: Indicator vector for additive components
- s_m: Indicator vector for multiplicative components
- Returns
- -------
- Dataframe with trend and yhat, each like df['t'].
- """
- trend = self.sample_predictive_trend(df, iteration)
- beta = self.params['beta'][iteration]
- Xb_a = np.matmul(seasonal_features.values, beta * s_a) * self.y_scale
- Xb_m = np.matmul(seasonal_features.values, beta * s_m)
- sigma = self.params['sigma_obs'][iteration]
- noise = np.random.normal(0, sigma, df.shape[0]) * self.y_scale
- return pd.DataFrame({
- 'yhat': trend * (1 + Xb_m) + Xb_a + noise,
- 'trend': trend
- })
- def sample_predictive_trend(self, df, iteration):
- """Simulate the trend using the extrapolated generative model.
- Parameters
- ----------
- df: Prediction dataframe.
- iteration: Int sampling iteration to use parameters from.
- Returns
- -------
- np.array of simulated trend over df['t'].
- """
- k = self.params['k'][iteration]
- m = self.params['m'][iteration]
- deltas = self.params['delta'][iteration]
- t = np.array(df['t'])
- T = t.max()
- # New changepoints from a Poisson process with rate S on [1, T]
- if T > 1:
- S = len(self.changepoints_t)
- n_changes = np.random.poisson(S * (T - 1))
- else:
- n_changes = 0
- if n_changes > 0:
- changepoint_ts_new = 1 + np.random.rand(n_changes) * (T - 1)
- changepoint_ts_new.sort()
- else:
- changepoint_ts_new = []
- # Get the empirical scale of the deltas, plus epsilon to avoid NaNs.
- lambda_ = np.mean(np.abs(deltas)) + 1e-8
- # Sample deltas
- deltas_new = np.random.laplace(0, lambda_, n_changes)
- # Prepend the times and deltas from the history
- changepoint_ts = np.concatenate((self.changepoints_t,
- changepoint_ts_new))
- deltas = np.concatenate((deltas, deltas_new))
- if self.growth == 'linear':
- trend = self.piecewise_linear(t, deltas, k, m, changepoint_ts)
- else:
- cap = df['cap_scaled']
- trend = self.piecewise_logistic(t, cap, deltas, k, m,
- changepoint_ts)
- return trend * self.y_scale + df['floor']
- def make_future_dataframe(self, periods, freq='D', include_history=True):
- """Simulate the trend using the extrapolated generative model.
- Parameters
- ----------
- periods: Int number of periods to forecast forward.
- freq: Any valid frequency for pd.date_range, such as 'D' or 'M'.
- include_history: Boolean to include the historical dates in the data
- frame for predictions.
- Returns
- -------
- pd.Dataframe that extends forward from the end of self.history for the
- requested number of periods.
- """
- if self.history_dates is None:
- raise Exception('Model must be fit before this can be used.')
- last_date = self.history_dates.max()
- dates = pd.date_range(
- start=last_date,
- periods=periods + 1, # An extra in case we include start
- freq=freq)
- dates = dates[dates > last_date] # Drop start if equals last_date
- dates = dates[:periods] # Return correct number of periods
- if include_history:
- dates = np.concatenate((np.array(self.history_dates), dates))
- return pd.DataFrame({'ds': dates})
- def plot(self, fcst, ax=None, uncertainty=True, plot_cap=True, xlabel='ds',
- ylabel='y'):
- """Plot the Prophet forecast.
- Parameters
- ----------
- fcst: pd.DataFrame output of self.predict.
- ax: Optional matplotlib axes on which to plot.
- uncertainty: Optional boolean to plot uncertainty intervals.
- plot_cap: Optional boolean indicating if the capacity should be shown
- in the figure, if available.
- xlabel: Optional label name on X-axis
- ylabel: Optional label name on Y-axis
- Returns
- -------
- A matplotlib figure.
- """
- return plot(
- m=self, fcst=fcst, ax=ax, uncertainty=uncertainty,
- plot_cap=plot_cap, xlabel=xlabel, ylabel=ylabel,
- )
- def plot_components(self, fcst, uncertainty=True, plot_cap=True,
- weekly_start=0, yearly_start=0):
- """Plot the Prophet forecast components.
- Will plot whichever are available of: trend, holidays, weekly
- seasonality, and yearly seasonality.
- Parameters
- ----------
- fcst: pd.DataFrame output of self.predict.
- uncertainty: Optional boolean to plot uncertainty intervals.
- plot_cap: Optional boolean indicating if the capacity should be shown
- in the figure, if available.
- weekly_start: Optional int specifying the start day of the weekly
- seasonality plot. 0 (default) starts the week on Sunday. 1 shifts
- by 1 day to Monday, and so on.
- yearly_start: Optional int specifying the start day of the yearly
- seasonality plot. 0 (default) starts the year on Jan 1. 1 shifts
- by 1 day to Jan 2, and so on.
- Returns
- -------
- A matplotlib figure.
- """
- return plot_components(
- m=self, fcst=fcst, uncertainty=uncertainty, plot_cap=plot_cap,
- weekly_start=weekly_start, yearly_start=yearly_start,
- )
|