test_prophet.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. # Copyright (c) 2017-present, Facebook, Inc.
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the BSD-style license found in the
  5. # LICENSE file in the root directory of this source tree. An additional grant
  6. # of patent rights can be found in the PATENTS file in the same directory.
  7. from __future__ import absolute_import
  8. from __future__ import division
  9. from __future__ import print_function
  10. from __future__ import unicode_literals
  11. import os
  12. from unittest import TestCase
  13. import numpy as np
  14. import pandas as pd
  15. from fbprophet import Prophet
  16. DATA = pd.read_csv(
  17. os.path.join(os.path.dirname(__file__), 'data.csv'),
  18. parse_dates=['ds'],
  19. )
  20. DATA2 = pd.read_csv(
  21. os.path.join(os.path.dirname(__file__), 'data2.csv'),
  22. parse_dates=['ds'],
  23. )
  24. class TestProphet(TestCase):
  25. def test_fit_predict(self):
  26. N = DATA.shape[0]
  27. train = DATA.head(N // 2)
  28. future = DATA.tail(N // 2)
  29. forecaster = Prophet()
  30. forecaster.fit(train)
  31. forecaster.predict(future)
  32. def test_fit_predict_no_seasons(self):
  33. N = DATA.shape[0]
  34. train = DATA.head(N // 2)
  35. future = DATA.tail(N // 2)
  36. forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
  37. forecaster.fit(train)
  38. forecaster.predict(future)
  39. def test_fit_predict_no_changepoints(self):
  40. N = DATA.shape[0]
  41. train = DATA.head(N // 2)
  42. future = DATA.tail(N // 2)
  43. forecaster = Prophet(n_changepoints=0)
  44. forecaster.fit(train)
  45. forecaster.predict(future)
  46. def test_fit_changepoint_not_in_history(self):
  47. train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
  48. future = pd.DataFrame({'ds': DATA['ds']})
  49. forecaster = Prophet(changepoints=['2013-06-06'])
  50. forecaster.fit(train)
  51. forecaster.predict(future)
  52. def test_fit_predict_duplicates(self):
  53. N = DATA.shape[0]
  54. train1 = DATA.head(N // 2).copy()
  55. train2 = DATA.head(N // 2).copy()
  56. train2['y'] += 10
  57. train = train1.append(train2)
  58. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  59. forecaster = Prophet()
  60. forecaster.fit(train)
  61. forecaster.predict(future)
  62. def test_fit_predict_constant_history(self):
  63. N = DATA.shape[0]
  64. train = DATA.head(N // 2).copy()
  65. train['y'] = 20
  66. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  67. m = Prophet()
  68. m.fit(train)
  69. fcst = m.predict(future)
  70. self.assertEqual(fcst['yhat'].values[-1], 20)
  71. train['y'] = 0
  72. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  73. m = Prophet()
  74. m.fit(train)
  75. fcst = m.predict(future)
  76. self.assertEqual(fcst['yhat'].values[-1], 0)
  77. def test_setup_dataframe(self):
  78. m = Prophet()
  79. N = DATA.shape[0]
  80. history = DATA.head(N // 2).copy()
  81. history = m.setup_dataframe(history, initialize_scales=True)
  82. self.assertTrue('t' in history)
  83. self.assertEqual(history['t'].min(), 0.0)
  84. self.assertEqual(history['t'].max(), 1.0)
  85. self.assertTrue('y_scaled' in history)
  86. self.assertEqual(history['y_scaled'].max(), 1.0)
  87. def test_logistic_floor(self):
  88. m = Prophet(growth='logistic')
  89. N = DATA.shape[0]
  90. history = DATA.head(N // 2).copy()
  91. history['floor'] = 10.
  92. history['cap'] = 80.
  93. future = DATA.tail(N // 2).copy()
  94. future['cap'] = 80.
  95. future['floor'] = 10.
  96. m.fit(history, algorithm='Newton')
  97. self.assertTrue(m.logistic_floor)
  98. self.assertTrue('floor' in m.history)
  99. self.assertAlmostEqual(m.history['y_scaled'][0], 1.)
  100. fcst1 = m.predict(future)
  101. m2 = Prophet(growth='logistic')
  102. history2 = history.copy()
  103. history2['y'] += 10.
  104. history2['floor'] += 10.
  105. history2['cap'] += 10.
  106. future['cap'] += 10.
  107. future['floor'] += 10.
  108. m2.fit(history2, algorithm='Newton')
  109. self.assertAlmostEqual(m2.history['y_scaled'][0], 1.)
  110. fcst2 = m2.predict(future)
  111. fcst2['yhat'] -= 10.
  112. # Check for approximate shift invariance
  113. self.assertTrue((np.abs(fcst1['yhat'] - fcst2['yhat']) < 1).all())
  114. def test_get_changepoints(self):
  115. m = Prophet()
  116. N = DATA.shape[0]
  117. history = DATA.head(N // 2).copy()
  118. history = m.setup_dataframe(history, initialize_scales=True)
  119. m.history = history
  120. m.set_changepoints()
  121. cp = m.changepoints_t
  122. self.assertEqual(cp.shape[0], m.n_changepoints)
  123. self.assertEqual(len(cp.shape), 1)
  124. self.assertTrue(cp.min() > 0)
  125. cp_indx = int(np.ceil(0.8 * history.shape[0]))
  126. self.assertTrue(cp.max() <= history['t'].values[cp_indx])
  127. def test_set_changepoint_range(self):
  128. m = Prophet(changepoint_range=0.4)
  129. N = DATA.shape[0]
  130. history = DATA.head(N // 2).copy()
  131. history = m.setup_dataframe(history, initialize_scales=True)
  132. m.history = history
  133. m.set_changepoints()
  134. cp = m.changepoints_t
  135. self.assertEqual(cp.shape[0], m.n_changepoints)
  136. self.assertEqual(len(cp.shape), 1)
  137. self.assertTrue(cp.min() > 0)
  138. cp_indx = int(np.ceil(0.4 * history.shape[0]))
  139. self.assertTrue(cp.max() <= history['t'].values[cp_indx])
  140. with self.assertRaises(ValueError):
  141. m = Prophet(changepoint_range=-0.1)
  142. with self.assertRaises(ValueError):
  143. m = Prophet(changepoint_range=2)
  144. def test_get_zero_changepoints(self):
  145. m = Prophet(n_changepoints=0)
  146. N = DATA.shape[0]
  147. history = DATA.head(N // 2).copy()
  148. history = m.setup_dataframe(history, initialize_scales=True)
  149. m.history = history
  150. m.set_changepoints()
  151. cp = m.changepoints_t
  152. self.assertEqual(cp.shape[0], 1)
  153. self.assertEqual(cp[0], 0)
  154. def test_override_n_changepoints(self):
  155. m = Prophet()
  156. history = DATA.head(20).copy()
  157. history = m.setup_dataframe(history, initialize_scales=True)
  158. m.history = history
  159. m.set_changepoints()
  160. self.assertEqual(m.n_changepoints, 15)
  161. cp = m.changepoints_t
  162. self.assertEqual(cp.shape[0], 15)
  163. def test_fourier_series_weekly(self):
  164. mat = Prophet.fourier_series(DATA['ds'], 7, 3)
  165. # These are from the R forecast package directly.
  166. true_values = np.array([
  167. 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
  168. ])
  169. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  170. def test_fourier_series_yearly(self):
  171. mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
  172. # These are from the R forecast package directly.
  173. true_values = np.array([
  174. 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
  175. ])
  176. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  177. def test_growth_init(self):
  178. model = Prophet(growth='logistic')
  179. history = DATA.iloc[:468].copy()
  180. history['cap'] = history['y'].max()
  181. history = model.setup_dataframe(history, initialize_scales=True)
  182. k, m = model.linear_growth_init(history)
  183. self.assertAlmostEqual(k, 0.3055671)
  184. self.assertAlmostEqual(m, 0.5307511)
  185. k, m = model.logistic_growth_init(history)
  186. self.assertAlmostEqual(k, 1.507925, places=4)
  187. self.assertAlmostEqual(m, -0.08167497, places=4)
  188. def test_piecewise_linear(self):
  189. model = Prophet()
  190. t = np.arange(11.)
  191. m = 0
  192. k = 1.0
  193. deltas = np.array([0.5])
  194. changepoint_ts = np.array([5])
  195. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  196. y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
  197. 6.5, 8.0, 9.5, 11.0, 12.5])
  198. self.assertEqual((y - y_true).sum(), 0.0)
  199. t = t[8:]
  200. y_true = y_true[8:]
  201. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  202. self.assertEqual((y - y_true).sum(), 0.0)
  203. def test_piecewise_logistic(self):
  204. model = Prophet()
  205. t = np.arange(11.)
  206. cap = np.ones(11) * 10
  207. m = 0
  208. k = 1.0
  209. deltas = np.array([0.5])
  210. changepoint_ts = np.array([5])
  211. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  212. y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
  213. 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
  214. 9.999963])
  215. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  216. t = t[8:]
  217. y_true = y_true[8:]
  218. cap = cap[8:]
  219. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  220. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  221. def test_holidays(self):
  222. holidays = pd.DataFrame({
  223. 'ds': pd.to_datetime(['2016-12-25']),
  224. 'holiday': ['xmas'],
  225. 'lower_window': [-1],
  226. 'upper_window': [0],
  227. })
  228. model = Prophet(holidays=holidays)
  229. df = pd.DataFrame({
  230. 'ds': pd.date_range('2016-12-20', '2016-12-31')
  231. })
  232. feats, priors, names = model.make_holiday_features(df['ds'], model.holidays)
  233. # 11 columns generated even though only 8 overlap
  234. self.assertEqual(feats.shape, (df.shape[0], 2))
  235. self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
  236. self.assertEqual(priors, [10., 10.]) # Default prior
  237. self.assertEqual(names, ['xmas'])
  238. holidays = pd.DataFrame({
  239. 'ds': pd.to_datetime(['2016-12-25']),
  240. 'holiday': ['xmas'],
  241. 'lower_window': [-1],
  242. 'upper_window': [10],
  243. })
  244. m = Prophet(holidays=holidays)
  245. feats, priors, names = m.make_holiday_features(df['ds'], m.holidays)
  246. # 12 columns generated even though only 8 overlap
  247. self.assertEqual(feats.shape, (df.shape[0], 12))
  248. self.assertEqual(priors, list(10. * np.ones(12)))
  249. self.assertEqual(names, ['xmas'])
  250. # Check prior specifications
  251. holidays = pd.DataFrame({
  252. 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
  253. 'holiday': ['xmas', 'xmas'],
  254. 'lower_window': [-1, -1],
  255. 'upper_window': [0, 0],
  256. 'prior_scale': [5., 5.],
  257. })
  258. m = Prophet(holidays=holidays)
  259. feats, priors, names = m.make_holiday_features(df['ds'], m.holidays)
  260. self.assertEqual(priors, [5., 5.])
  261. self.assertEqual(names, ['xmas'])
  262. # 2 different priors
  263. holidays2 = pd.DataFrame({
  264. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  265. 'holiday': ['seans-bday'] * 2,
  266. 'lower_window': [0] * 2,
  267. 'upper_window': [1] * 2,
  268. 'prior_scale': [8] * 2,
  269. })
  270. holidays2 = pd.concat((holidays, holidays2))
  271. m = Prophet(holidays=holidays2)
  272. feats, priors, names = m.make_holiday_features(df['ds'], m.holidays)
  273. pn = zip(priors, [s.split('_delim_')[0] for s in feats.columns])
  274. for t in pn:
  275. self.assertIn(t, [(8., 'seans-bday'), (5., 'xmas')])
  276. holidays2 = pd.DataFrame({
  277. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  278. 'holiday': ['seans-bday'] * 2,
  279. 'lower_window': [0] * 2,
  280. 'upper_window': [1] * 2,
  281. })
  282. holidays2 = pd.concat((holidays, holidays2))
  283. feats, priors, names = Prophet(
  284. holidays=holidays2, holidays_prior_scale=4
  285. ).make_holiday_features(df['ds'], holidays2)
  286. self.assertEqual(set(priors), {4., 5.})
  287. # Check incompatible priors
  288. holidays = pd.DataFrame({
  289. 'ds': pd.to_datetime(['2016-12-25', '2016-12-27']),
  290. 'holiday': ['xmasish', 'xmasish'],
  291. 'lower_window': [-1, -1],
  292. 'upper_window': [0, 0],
  293. 'prior_scale': [5., 6.],
  294. })
  295. with self.assertRaises(ValueError):
  296. Prophet(holidays=holidays).make_holiday_features(df['ds'], holidays)
  297. def test_fit_with_holidays(self):
  298. holidays = pd.DataFrame({
  299. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  300. 'holiday': ['seans-bday'] * 2,
  301. 'lower_window': [0] * 2,
  302. 'upper_window': [1] * 2,
  303. })
  304. model = Prophet(holidays=holidays, uncertainty_samples=0)
  305. model.fit(DATA).predict()
  306. def test_fit_predict_with_country_holidays(self):
  307. holidays = pd.DataFrame({
  308. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  309. 'holiday': ['seans-bday'] * 2,
  310. 'lower_window': [0] * 2,
  311. 'upper_window': [1] * 2,
  312. })
  313. # Test with holidays and country_holidays
  314. model = Prophet(holidays=holidays, uncertainty_samples=0)
  315. model.add_country_holidays(country_name='US')
  316. model.fit(DATA).predict()
  317. # There are training holidays missing in the test set
  318. train = DATA.head(154)
  319. future = DATA.tail(355)
  320. model = Prophet(uncertainty_samples=0)
  321. model.add_country_holidays(country_name='US')
  322. model.fit(train).predict(future)
  323. # There are test holidays missing in the training set
  324. train = DATA.tail(355)
  325. future = DATA2
  326. model = Prophet(uncertainty_samples=0)
  327. model.add_country_holidays(country_name='US')
  328. model.fit(train).predict(future)
  329. def test_make_future_dataframe(self):
  330. N = 468
  331. train = DATA.head(N // 2)
  332. forecaster = Prophet()
  333. forecaster.fit(train)
  334. future = forecaster.make_future_dataframe(periods=3, freq='D',
  335. include_history=False)
  336. correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
  337. self.assertEqual(len(future), 3)
  338. for i in range(3):
  339. self.assertEqual(future.iloc[i]['ds'], correct[i])
  340. future = forecaster.make_future_dataframe(periods=3, freq='M',
  341. include_history=False)
  342. correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
  343. self.assertEqual(len(future), 3)
  344. for i in range(3):
  345. self.assertEqual(future.iloc[i]['ds'], correct[i])
  346. def test_auto_weekly_seasonality(self):
  347. # Should be enabled
  348. N = 15
  349. train = DATA.head(N)
  350. m = Prophet()
  351. self.assertEqual(m.weekly_seasonality, 'auto')
  352. m.fit(train)
  353. self.assertIn('weekly', m.seasonalities)
  354. self.assertEqual(
  355. m.seasonalities['weekly'],
  356. {
  357. 'period': 7,
  358. 'fourier_order': 3,
  359. 'prior_scale': 10.,
  360. 'mode': 'additive',
  361. },
  362. )
  363. # Should be disabled due to too short history
  364. N = 9
  365. train = DATA.head(N)
  366. m = Prophet()
  367. m.fit(train)
  368. self.assertNotIn('weekly', m.seasonalities)
  369. m = Prophet(weekly_seasonality=True)
  370. m.fit(train)
  371. self.assertIn('weekly', m.seasonalities)
  372. # Should be False due to weekly spacing
  373. train = DATA.iloc[::7, :]
  374. m = Prophet()
  375. m.fit(train)
  376. self.assertNotIn('weekly', m.seasonalities)
  377. m = Prophet(weekly_seasonality=2, seasonality_prior_scale=3.)
  378. m.fit(DATA)
  379. self.assertEqual(
  380. m.seasonalities['weekly'],
  381. {
  382. 'period': 7,
  383. 'fourier_order': 2,
  384. 'prior_scale': 3.,
  385. 'mode': 'additive',
  386. },
  387. )
  388. def test_auto_yearly_seasonality(self):
  389. # Should be enabled
  390. m = Prophet()
  391. self.assertEqual(m.yearly_seasonality, 'auto')
  392. m.fit(DATA)
  393. self.assertIn('yearly', m.seasonalities)
  394. self.assertEqual(
  395. m.seasonalities['yearly'],
  396. {
  397. 'period': 365.25,
  398. 'fourier_order': 10,
  399. 'prior_scale': 10.,
  400. 'mode': 'additive',
  401. },
  402. )
  403. # Should be disabled due to too short history
  404. N = 240
  405. train = DATA.head(N)
  406. m = Prophet()
  407. m.fit(train)
  408. self.assertNotIn('yearly', m.seasonalities)
  409. m = Prophet(yearly_seasonality=True)
  410. m.fit(train)
  411. self.assertIn('yearly', m.seasonalities)
  412. m = Prophet(yearly_seasonality=7, seasonality_prior_scale=3.)
  413. m.fit(DATA)
  414. self.assertEqual(
  415. m.seasonalities['yearly'],
  416. {
  417. 'period': 365.25,
  418. 'fourier_order': 7,
  419. 'prior_scale': 3.,
  420. 'mode': 'additive',
  421. },
  422. )
  423. def test_auto_daily_seasonality(self):
  424. # Should be enabled
  425. m = Prophet()
  426. self.assertEqual(m.daily_seasonality, 'auto')
  427. m.fit(DATA2)
  428. self.assertIn('daily', m.seasonalities)
  429. self.assertEqual(
  430. m.seasonalities['daily'],
  431. {
  432. 'period': 1,
  433. 'fourier_order': 4,
  434. 'prior_scale': 10.,
  435. 'mode': 'additive',
  436. },
  437. )
  438. # Should be disabled due to too short history
  439. N = 430
  440. train = DATA2.head(N)
  441. m = Prophet()
  442. m.fit(train)
  443. self.assertNotIn('daily', m.seasonalities)
  444. m = Prophet(daily_seasonality=True)
  445. m.fit(train)
  446. self.assertIn('daily', m.seasonalities)
  447. m = Prophet(daily_seasonality=7, seasonality_prior_scale=3.)
  448. m.fit(DATA2)
  449. self.assertEqual(
  450. m.seasonalities['daily'],
  451. {
  452. 'period': 1,
  453. 'fourier_order': 7,
  454. 'prior_scale': 3.,
  455. 'mode': 'additive',
  456. },
  457. )
  458. m = Prophet()
  459. m.fit(DATA)
  460. self.assertNotIn('daily', m.seasonalities)
  461. def test_subdaily_holidays(self):
  462. holidays = pd.DataFrame({
  463. 'ds': pd.to_datetime(['2017-01-02']),
  464. 'holiday': ['special_day'],
  465. })
  466. m = Prophet(holidays=holidays)
  467. m.fit(DATA2)
  468. fcst = m.predict()
  469. self.assertEqual(sum(fcst['special_day'] == 0), 575)
  470. def test_custom_seasonality(self):
  471. holidays = pd.DataFrame({
  472. 'ds': pd.to_datetime(['2017-01-02']),
  473. 'holiday': ['special_day'],
  474. 'prior_scale': [4.],
  475. })
  476. m = Prophet(holidays=holidays)
  477. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  478. prior_scale=2.)
  479. self.assertEqual(
  480. m.seasonalities['monthly'],
  481. {
  482. 'period': 30,
  483. 'fourier_order': 5,
  484. 'prior_scale': 2.,
  485. 'mode': 'additive',
  486. },
  487. )
  488. with self.assertRaises(ValueError):
  489. m.add_seasonality(name='special_day', period=30, fourier_order=5)
  490. with self.assertRaises(ValueError):
  491. m.add_seasonality(name='trend', period=30, fourier_order=5)
  492. m.add_seasonality(name='weekly', period=30, fourier_order=5)
  493. # Test priors
  494. m = Prophet(
  495. holidays=holidays, yearly_seasonality=False,
  496. seasonality_mode='multiplicative',
  497. )
  498. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  499. prior_scale=2., mode='additive')
  500. m.fit(DATA.copy())
  501. self.assertEqual(m.seasonalities['monthly']['mode'], 'additive')
  502. self.assertEqual(m.seasonalities['weekly']['mode'], 'multiplicative')
  503. seasonal_features, prior_scales, component_cols, modes = (
  504. m.make_all_seasonality_features(m.history)
  505. )
  506. self.assertEqual(sum(component_cols['monthly']), 10)
  507. self.assertEqual(sum(component_cols['special_day']), 1)
  508. self.assertEqual(sum(component_cols['weekly']), 6)
  509. self.assertEqual(sum(component_cols['additive_terms']), 10)
  510. self.assertEqual(sum(component_cols['multiplicative_terms']), 7)
  511. if seasonal_features.columns[0] == 'monthly_delim_1':
  512. true = [2.] * 10 + [10.] * 6 + [4.]
  513. self.assertEqual(sum(component_cols['monthly'][:10]), 10)
  514. self.assertEqual(sum(component_cols['weekly'][10:16]), 6)
  515. else:
  516. true = [10.] * 6 + [2.] * 10 + [4.]
  517. self.assertEqual(sum(component_cols['weekly'][:6]), 6)
  518. self.assertEqual(sum(component_cols['monthly'][6:16]), 10)
  519. self.assertEqual(prior_scales, true)
  520. def test_added_regressors(self):
  521. m = Prophet()
  522. m.add_regressor('binary_feature', prior_scale=0.2)
  523. m.add_regressor('numeric_feature', prior_scale=0.5)
  524. m.add_regressor(
  525. 'numeric_feature2', prior_scale=0.5, mode='multiplicative'
  526. )
  527. m.add_regressor('binary_feature2', standardize=True)
  528. df = DATA.copy()
  529. df['binary_feature'] = [0] * 255 + [1] * 255
  530. df['numeric_feature'] = range(510)
  531. df['numeric_feature2'] = range(510)
  532. with self.assertRaises(ValueError):
  533. # Require all regressors in df
  534. m.fit(df)
  535. df['binary_feature2'] = [1] * 100 + [0] * 410
  536. m.fit(df)
  537. # Check that standardizations are correctly set
  538. self.assertEqual(
  539. m.extra_regressors['binary_feature'],
  540. {
  541. 'prior_scale': 0.2,
  542. 'mu': 0,
  543. 'std': 1,
  544. 'standardize': 'auto',
  545. 'mode': 'additive',
  546. },
  547. )
  548. self.assertEqual(
  549. m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
  550. self.assertEqual(
  551. m.extra_regressors['numeric_feature']['mu'], 254.5)
  552. self.assertAlmostEqual(
  553. m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
  554. self.assertEqual(
  555. m.extra_regressors['numeric_feature2']['mode'], 'multiplicative')
  556. self.assertEqual(
  557. m.extra_regressors['binary_feature2']['prior_scale'], 10.)
  558. self.assertAlmostEqual(
  559. m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
  560. self.assertAlmostEqual(
  561. m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
  562. # Check that standardization is done correctly
  563. df2 = m.setup_dataframe(df.copy())
  564. self.assertEqual(df2['binary_feature'][0], 0)
  565. self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
  566. self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
  567. # Check that feature matrix and prior scales are correctly constructed
  568. seasonal_features, prior_scales, component_cols, modes = (
  569. m.make_all_seasonality_features(df2)
  570. )
  571. self.assertEqual(seasonal_features.shape[1], 30)
  572. names = ['binary_feature', 'numeric_feature', 'binary_feature2']
  573. true_priors = [0.2, 0.5, 10.]
  574. for i, name in enumerate(names):
  575. self.assertIn(name, seasonal_features)
  576. self.assertEqual(sum(component_cols[name]), 1)
  577. self.assertEqual(
  578. sum(np.array(prior_scales) * component_cols[name]),
  579. true_priors[i],
  580. )
  581. # Check that forecast components are reasonable
  582. future = pd.DataFrame({
  583. 'ds': ['2014-06-01'],
  584. 'binary_feature': [0],
  585. 'numeric_feature': [10],
  586. 'numeric_feature2': [10],
  587. })
  588. with self.assertRaises(ValueError):
  589. m.predict(future)
  590. future['binary_feature2'] = 0
  591. fcst = m.predict(future)
  592. self.assertEqual(fcst.shape[1], 37)
  593. self.assertEqual(fcst['binary_feature'][0], 0)
  594. self.assertAlmostEqual(
  595. fcst['extra_regressors_additive'][0],
  596. fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
  597. )
  598. self.assertAlmostEqual(
  599. fcst['extra_regressors_multiplicative'][0],
  600. fcst['numeric_feature2'][0],
  601. )
  602. self.assertAlmostEqual(
  603. fcst['additive_terms'][0],
  604. fcst['yearly'][0] + fcst['weekly'][0]
  605. + fcst['extra_regressors_additive'][0],
  606. )
  607. self.assertAlmostEqual(
  608. fcst['multiplicative_terms'][0],
  609. fcst['extra_regressors_multiplicative'][0],
  610. )
  611. self.assertAlmostEqual(
  612. fcst['yhat'][0],
  613. fcst['trend'][0] * (1 + fcst['multiplicative_terms'][0])
  614. + fcst['additive_terms'][0],
  615. )
  616. # Check works if constant extra regressor at 0
  617. df['constant_feature'] = 0
  618. m = Prophet()
  619. m.add_regressor('constant_feature')
  620. m.fit(df)
  621. self.assertEqual(m.extra_regressors['constant_feature']['std'], 1)
  622. def test_set_seasonality_mode(self):
  623. # Setting attribute
  624. m = Prophet()
  625. self.assertEqual(m.seasonality_mode, 'additive')
  626. m = Prophet(seasonality_mode='multiplicative')
  627. self.assertEqual(m.seasonality_mode, 'multiplicative')
  628. with self.assertRaises(ValueError):
  629. Prophet(seasonality_mode='batman')
  630. def test_seasonality_modes(self):
  631. # Model with holidays, seasonalities, and extra regressors
  632. holidays = pd.DataFrame({
  633. 'ds': pd.to_datetime(['2016-12-25']),
  634. 'holiday': ['xmas'],
  635. 'lower_window': [-1],
  636. 'upper_window': [0],
  637. })
  638. m = Prophet(seasonality_mode='multiplicative', holidays=holidays)
  639. m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3)
  640. m.add_regressor('binary_feature', mode='additive')
  641. m.add_regressor('numeric_feature')
  642. # Construct seasonal features
  643. df = DATA.copy()
  644. df['binary_feature'] = [0] * 255 + [1] * 255
  645. df['numeric_feature'] = range(510)
  646. df = m.setup_dataframe(df, initialize_scales=True)
  647. m.history = df.copy()
  648. m.set_auto_seasonalities()
  649. seasonal_features, prior_scales, component_cols, modes = (
  650. m.make_all_seasonality_features(df))
  651. self.assertEqual(sum(component_cols['additive_terms']), 7)
  652. self.assertEqual(sum(component_cols['multiplicative_terms']), 29)
  653. self.assertEqual(
  654. set(modes['additive']),
  655. {'monthly', 'binary_feature', 'additive_terms',
  656. 'extra_regressors_additive'},
  657. )
  658. self.assertEqual(
  659. set(modes['multiplicative']),
  660. {'weekly', 'yearly', 'xmas', 'numeric_feature',
  661. 'multiplicative_terms', 'extra_regressors_multiplicative',
  662. 'holidays',
  663. },
  664. )