123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730 |
- # Copyright (c) 2017-present, Facebook, Inc.
- # All rights reserved.
- #
- # This source code is licensed under the BSD-style license found in the
- # LICENSE file in the root directory of this source tree. An additional grant
- # of patent rights can be found in the PATENTS file in the same directory.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import os
- from unittest import TestCase
- import numpy as np
- import pandas as pd
- from fbprophet import Prophet
- DATA = pd.read_csv(
- os.path.join(os.path.dirname(__file__), 'data.csv'),
- parse_dates=['ds'],
- )
- DATA2 = pd.read_csv(
- os.path.join(os.path.dirname(__file__), 'data2.csv'),
- parse_dates=['ds'],
- )
- class TestProphet(TestCase):
- def test_fit_predict(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2)
- future = DATA.tail(N // 2)
- forecaster = Prophet()
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_no_seasons(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2)
- future = DATA.tail(N // 2)
- forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_no_changepoints(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2)
- future = DATA.tail(N // 2)
- forecaster = Prophet(n_changepoints=0)
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_changepoint_not_in_history(self):
- train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
- future = pd.DataFrame({'ds': DATA['ds']})
- forecaster = Prophet(changepoints=['2013-06-06'])
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_duplicates(self):
- N = DATA.shape[0]
- train1 = DATA.head(N // 2).copy()
- train2 = DATA.head(N // 2).copy()
- train2['y'] += 10
- train = train1.append(train2)
- future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
- forecaster = Prophet()
- forecaster.fit(train)
- forecaster.predict(future)
- def test_fit_predict_constant_history(self):
- N = DATA.shape[0]
- train = DATA.head(N // 2).copy()
- train['y'] = 20
- future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
- m = Prophet()
- m.fit(train)
- fcst = m.predict(future)
- self.assertEqual(fcst['yhat'].values[-1], 20)
- train['y'] = 0
- future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
- m = Prophet()
- m.fit(train)
- fcst = m.predict(future)
- self.assertEqual(fcst['yhat'].values[-1], 0)
- def test_setup_dataframe(self):
- m = Prophet()
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- self.assertTrue('t' in history)
- self.assertEqual(history['t'].min(), 0.0)
- self.assertEqual(history['t'].max(), 1.0)
- self.assertTrue('y_scaled' in history)
- self.assertEqual(history['y_scaled'].max(), 1.0)
- def test_logistic_floor(self):
- m = Prophet(growth='logistic')
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history['floor'] = 10.
- history['cap'] = 80.
- future = DATA.tail(N // 2).copy()
- future['cap'] = 80.
- future['floor'] = 10.
- m.fit(history, algorithm='Newton')
- self.assertTrue(m.logistic_floor)
- self.assertTrue('floor' in m.history)
- self.assertAlmostEqual(m.history['y_scaled'][0], 1.)
- fcst1 = m.predict(future)
- m2 = Prophet(growth='logistic')
- history2 = history.copy()
- history2['y'] += 10.
- history2['floor'] += 10.
- history2['cap'] += 10.
- future['cap'] += 10.
- future['floor'] += 10.
- m2.fit(history2, algorithm='Newton')
- self.assertAlmostEqual(m2.history['y_scaled'][0], 1.)
- fcst2 = m2.predict(future)
- fcst2['yhat'] -= 10.
- # Check for approximate shift invariance
- self.assertTrue((np.abs(fcst1['yhat'] - fcst2['yhat']) < 1).all())
- def test_get_changepoints(self):
- m = Prophet()
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- m.history = history
- m.set_changepoints()
- cp = m.changepoints_t
- self.assertEqual(cp.shape[0], m.n_changepoints)
- self.assertEqual(len(cp.shape), 1)
- self.assertTrue(cp.min() > 0)
- cp_indx = int(np.ceil(0.8 * history.shape[0]))
- self.assertTrue(cp.max() <= history['t'].values[cp_indx])
- def test_set_changepoint_range(self):
- m = Prophet(changepoint_range=0.4)
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- m.history = history
- m.set_changepoints()
- cp = m.changepoints_t
- self.assertEqual(cp.shape[0], m.n_changepoints)
- self.assertEqual(len(cp.shape), 1)
- self.assertTrue(cp.min() > 0)
- cp_indx = int(np.ceil(0.4 * history.shape[0]))
- self.assertTrue(cp.max() <= history['t'].values[cp_indx])
- with self.assertRaises(ValueError):
- m = Prophet(changepoint_range=-0.1)
- with self.assertRaises(ValueError):
- m = Prophet(changepoint_range=2)
- def test_get_zero_changepoints(self):
- m = Prophet(n_changepoints=0)
- N = DATA.shape[0]
- history = DATA.head(N // 2).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- m.history = history
- m.set_changepoints()
- cp = m.changepoints_t
- self.assertEqual(cp.shape[0], 1)
- self.assertEqual(cp[0], 0)
- def test_override_n_changepoints(self):
- m = Prophet()
- history = DATA.head(20).copy()
- history = m.setup_dataframe(history, initialize_scales=True)
- m.history = history
- m.set_changepoints()
- self.assertEqual(m.n_changepoints, 15)
- cp = m.changepoints_t
- self.assertEqual(cp.shape[0], 15)
- def test_fourier_series_weekly(self):
- mat = Prophet.fourier_series(DATA['ds'], 7, 3)
- # These are from the R forecast package directly.
- true_values = np.array([
- 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
- ])
- self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
- def test_fourier_series_yearly(self):
- mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
- # These are from the R forecast package directly.
- true_values = np.array([
- 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
- ])
- self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
- def test_growth_init(self):
- model = Prophet(growth='logistic')
- history = DATA.iloc[:468].copy()
- history['cap'] = history['y'].max()
- history = model.setup_dataframe(history, initialize_scales=True)
- k, m = model.linear_growth_init(history)
- self.assertAlmostEqual(k, 0.3055671)
- self.assertAlmostEqual(m, 0.5307511)
- k, m = model.logistic_growth_init(history)
- self.assertAlmostEqual(k, 1.507925, places=4)
- self.assertAlmostEqual(m, -0.08167497, places=4)
- def test_piecewise_linear(self):
- model = Prophet()
- t = np.arange(11.)
- m = 0
- k = 1.0
- deltas = np.array([0.5])
- changepoint_ts = np.array([5])
- y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
- y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
- 6.5, 8.0, 9.5, 11.0, 12.5])
- self.assertEqual((y - y_true).sum(), 0.0)
- t = t[8:]
- y_true = y_true[8:]
- y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
- self.assertEqual((y - y_true).sum(), 0.0)
- def test_piecewise_logistic(self):
- model = Prophet()
- t = np.arange(11.)
- cap = np.ones(11) * 10
- m = 0
- k = 1.0
- deltas = np.array([0.5])
- changepoint_ts = np.array([5])
- y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
- y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
- 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
- 9.999963])
- self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
- t = t[8:]
- y_true = y_true[8:]
- cap = cap[8:]
- y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
- self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
- def test_holidays(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2016-12-25']),
- 'holiday': ['xmas'],
- 'lower_window': [-1],
- 'upper_window': [0],
- })
- model = Prophet(holidays=holidays)
- df = pd.DataFrame({
- 'ds': pd.date_range('2016-12-20', '2016-12-31')
- })
- feats, priors, names = model.make_holiday_features(df['ds'], model.holidays)
- # 11 columns generated even though only 8 overlap
- self.assertEqual(feats.shape, (df.shape[0], 2))
- self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
- self.assertEqual(priors, [10., 10.]) # Default prior
- self.assertEqual(names, ['xmas'])
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2016-12-25']),
- 'holiday': ['xmas'],
- 'lower_window': [-1],
- 'upper_window': [10],
- })
- m = Prophet(holidays=holidays)
- feats, priors, names = m.make_holiday_features(df['ds'], m.holidays)
- # 12 columns generated even though only 8 overlap
- self.assertEqual(feats.shape, (df.shape[0], 12))
- self.assertEqual(priors, list(10. * np.ones(12)))
- self.assertEqual(names, ['xmas'])
- # Check prior specifications
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
- 'holiday': ['xmas', 'xmas'],
- 'lower_window': [-1, -1],
- 'upper_window': [0, 0],
- 'prior_scale': [5., 5.],
- })
- m = Prophet(holidays=holidays)
- feats, priors, names = m.make_holiday_features(df['ds'], m.holidays)
- self.assertEqual(priors, [5., 5.])
- self.assertEqual(names, ['xmas'])
- # 2 different priors
- holidays2 = pd.DataFrame({
- 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
- 'holiday': ['seans-bday'] * 2,
- 'lower_window': [0] * 2,
- 'upper_window': [1] * 2,
- 'prior_scale': [8] * 2,
- })
- holidays2 = pd.concat((holidays, holidays2))
- m = Prophet(holidays=holidays2)
- feats, priors, names = m.make_holiday_features(df['ds'], m.holidays)
- pn = zip(priors, [s.split('_delim_')[0] for s in feats.columns])
- for t in pn:
- self.assertIn(t, [(8., 'seans-bday'), (5., 'xmas')])
- holidays2 = pd.DataFrame({
- 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
- 'holiday': ['seans-bday'] * 2,
- 'lower_window': [0] * 2,
- 'upper_window': [1] * 2,
- })
- holidays2 = pd.concat((holidays, holidays2))
- feats, priors, names = Prophet(
- holidays=holidays2, holidays_prior_scale=4
- ).make_holiday_features(df['ds'], holidays2)
- self.assertEqual(set(priors), {4., 5.})
- # Check incompatible priors
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2016-12-25', '2016-12-27']),
- 'holiday': ['xmasish', 'xmasish'],
- 'lower_window': [-1, -1],
- 'upper_window': [0, 0],
- 'prior_scale': [5., 6.],
- })
- with self.assertRaises(ValueError):
- Prophet(holidays=holidays).make_holiday_features(df['ds'], holidays)
- def test_fit_with_holidays(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
- 'holiday': ['seans-bday'] * 2,
- 'lower_window': [0] * 2,
- 'upper_window': [1] * 2,
- })
- model = Prophet(holidays=holidays, uncertainty_samples=0)
- model.fit(DATA).predict()
- def test_fit_predict_with_country_holidays(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
- 'holiday': ['seans-bday'] * 2,
- 'lower_window': [0] * 2,
- 'upper_window': [1] * 2,
- })
- # Test with holidays and country_holidays
- model = Prophet(holidays=holidays, uncertainty_samples=0)
- model.add_country_holidays(country_name='US')
- model.fit(DATA).predict()
- # There are training holidays missing in the test set
- train = DATA.head(154)
- future = DATA.tail(355)
- model = Prophet(uncertainty_samples=0)
- model.add_country_holidays(country_name='US')
- model.fit(train).predict(future)
- # There are test holidays missing in the training set
- train = DATA.tail(355)
- future = DATA2
- model = Prophet(uncertainty_samples=0)
- model.add_country_holidays(country_name='US')
- model.fit(train).predict(future)
- def test_make_future_dataframe(self):
- N = 468
- train = DATA.head(N // 2)
- forecaster = Prophet()
- forecaster.fit(train)
- future = forecaster.make_future_dataframe(periods=3, freq='D',
- include_history=False)
- correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
- self.assertEqual(len(future), 3)
- for i in range(3):
- self.assertEqual(future.iloc[i]['ds'], correct[i])
- future = forecaster.make_future_dataframe(periods=3, freq='M',
- include_history=False)
- correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
- self.assertEqual(len(future), 3)
- for i in range(3):
- self.assertEqual(future.iloc[i]['ds'], correct[i])
- def test_auto_weekly_seasonality(self):
- # Should be enabled
- N = 15
- train = DATA.head(N)
- m = Prophet()
- self.assertEqual(m.weekly_seasonality, 'auto')
- m.fit(train)
- self.assertIn('weekly', m.seasonalities)
- self.assertEqual(
- m.seasonalities['weekly'],
- {
- 'period': 7,
- 'fourier_order': 3,
- 'prior_scale': 10.,
- 'mode': 'additive',
- },
- )
- # Should be disabled due to too short history
- N = 9
- train = DATA.head(N)
- m = Prophet()
- m.fit(train)
- self.assertNotIn('weekly', m.seasonalities)
- m = Prophet(weekly_seasonality=True)
- m.fit(train)
- self.assertIn('weekly', m.seasonalities)
- # Should be False due to weekly spacing
- train = DATA.iloc[::7, :]
- m = Prophet()
- m.fit(train)
- self.assertNotIn('weekly', m.seasonalities)
- m = Prophet(weekly_seasonality=2, seasonality_prior_scale=3.)
- m.fit(DATA)
- self.assertEqual(
- m.seasonalities['weekly'],
- {
- 'period': 7,
- 'fourier_order': 2,
- 'prior_scale': 3.,
- 'mode': 'additive',
- },
- )
- def test_auto_yearly_seasonality(self):
- # Should be enabled
- m = Prophet()
- self.assertEqual(m.yearly_seasonality, 'auto')
- m.fit(DATA)
- self.assertIn('yearly', m.seasonalities)
- self.assertEqual(
- m.seasonalities['yearly'],
- {
- 'period': 365.25,
- 'fourier_order': 10,
- 'prior_scale': 10.,
- 'mode': 'additive',
- },
- )
- # Should be disabled due to too short history
- N = 240
- train = DATA.head(N)
- m = Prophet()
- m.fit(train)
- self.assertNotIn('yearly', m.seasonalities)
- m = Prophet(yearly_seasonality=True)
- m.fit(train)
- self.assertIn('yearly', m.seasonalities)
- m = Prophet(yearly_seasonality=7, seasonality_prior_scale=3.)
- m.fit(DATA)
- self.assertEqual(
- m.seasonalities['yearly'],
- {
- 'period': 365.25,
- 'fourier_order': 7,
- 'prior_scale': 3.,
- 'mode': 'additive',
- },
- )
- def test_auto_daily_seasonality(self):
- # Should be enabled
- m = Prophet()
- self.assertEqual(m.daily_seasonality, 'auto')
- m.fit(DATA2)
- self.assertIn('daily', m.seasonalities)
- self.assertEqual(
- m.seasonalities['daily'],
- {
- 'period': 1,
- 'fourier_order': 4,
- 'prior_scale': 10.,
- 'mode': 'additive',
- },
- )
- # Should be disabled due to too short history
- N = 430
- train = DATA2.head(N)
- m = Prophet()
- m.fit(train)
- self.assertNotIn('daily', m.seasonalities)
- m = Prophet(daily_seasonality=True)
- m.fit(train)
- self.assertIn('daily', m.seasonalities)
- m = Prophet(daily_seasonality=7, seasonality_prior_scale=3.)
- m.fit(DATA2)
- self.assertEqual(
- m.seasonalities['daily'],
- {
- 'period': 1,
- 'fourier_order': 7,
- 'prior_scale': 3.,
- 'mode': 'additive',
- },
- )
- m = Prophet()
- m.fit(DATA)
- self.assertNotIn('daily', m.seasonalities)
- def test_subdaily_holidays(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2017-01-02']),
- 'holiday': ['special_day'],
- })
- m = Prophet(holidays=holidays)
- m.fit(DATA2)
- fcst = m.predict()
- self.assertEqual(sum(fcst['special_day'] == 0), 575)
- def test_custom_seasonality(self):
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2017-01-02']),
- 'holiday': ['special_day'],
- 'prior_scale': [4.],
- })
- m = Prophet(holidays=holidays)
- m.add_seasonality(name='monthly', period=30, fourier_order=5,
- prior_scale=2.)
- self.assertEqual(
- m.seasonalities['monthly'],
- {
- 'period': 30,
- 'fourier_order': 5,
- 'prior_scale': 2.,
- 'mode': 'additive',
- },
- )
- with self.assertRaises(ValueError):
- m.add_seasonality(name='special_day', period=30, fourier_order=5)
- with self.assertRaises(ValueError):
- m.add_seasonality(name='trend', period=30, fourier_order=5)
- m.add_seasonality(name='weekly', period=30, fourier_order=5)
- # Test priors
- m = Prophet(
- holidays=holidays, yearly_seasonality=False,
- seasonality_mode='multiplicative',
- )
- m.add_seasonality(name='monthly', period=30, fourier_order=5,
- prior_scale=2., mode='additive')
- m.fit(DATA.copy())
- self.assertEqual(m.seasonalities['monthly']['mode'], 'additive')
- self.assertEqual(m.seasonalities['weekly']['mode'], 'multiplicative')
- seasonal_features, prior_scales, component_cols, modes = (
- m.make_all_seasonality_features(m.history)
- )
- self.assertEqual(sum(component_cols['monthly']), 10)
- self.assertEqual(sum(component_cols['special_day']), 1)
- self.assertEqual(sum(component_cols['weekly']), 6)
- self.assertEqual(sum(component_cols['additive_terms']), 10)
- self.assertEqual(sum(component_cols['multiplicative_terms']), 7)
- if seasonal_features.columns[0] == 'monthly_delim_1':
- true = [2.] * 10 + [10.] * 6 + [4.]
- self.assertEqual(sum(component_cols['monthly'][:10]), 10)
- self.assertEqual(sum(component_cols['weekly'][10:16]), 6)
- else:
- true = [10.] * 6 + [2.] * 10 + [4.]
- self.assertEqual(sum(component_cols['weekly'][:6]), 6)
- self.assertEqual(sum(component_cols['monthly'][6:16]), 10)
- self.assertEqual(prior_scales, true)
- def test_added_regressors(self):
- m = Prophet()
- m.add_regressor('binary_feature', prior_scale=0.2)
- m.add_regressor('numeric_feature', prior_scale=0.5)
- m.add_regressor(
- 'numeric_feature2', prior_scale=0.5, mode='multiplicative'
- )
- m.add_regressor('binary_feature2', standardize=True)
- df = DATA.copy()
- df['binary_feature'] = [0] * 255 + [1] * 255
- df['numeric_feature'] = range(510)
- df['numeric_feature2'] = range(510)
- with self.assertRaises(ValueError):
- # Require all regressors in df
- m.fit(df)
- df['binary_feature2'] = [1] * 100 + [0] * 410
- m.fit(df)
- # Check that standardizations are correctly set
- self.assertEqual(
- m.extra_regressors['binary_feature'],
- {
- 'prior_scale': 0.2,
- 'mu': 0,
- 'std': 1,
- 'standardize': 'auto',
- 'mode': 'additive',
- },
- )
- self.assertEqual(
- m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
- self.assertEqual(
- m.extra_regressors['numeric_feature']['mu'], 254.5)
- self.assertAlmostEqual(
- m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
- self.assertEqual(
- m.extra_regressors['numeric_feature2']['mode'], 'multiplicative')
- self.assertEqual(
- m.extra_regressors['binary_feature2']['prior_scale'], 10.)
- self.assertAlmostEqual(
- m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
- self.assertAlmostEqual(
- m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
- # Check that standardization is done correctly
- df2 = m.setup_dataframe(df.copy())
- self.assertEqual(df2['binary_feature'][0], 0)
- self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
- self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
- # Check that feature matrix and prior scales are correctly constructed
- seasonal_features, prior_scales, component_cols, modes = (
- m.make_all_seasonality_features(df2)
- )
- self.assertEqual(seasonal_features.shape[1], 30)
- names = ['binary_feature', 'numeric_feature', 'binary_feature2']
- true_priors = [0.2, 0.5, 10.]
- for i, name in enumerate(names):
- self.assertIn(name, seasonal_features)
- self.assertEqual(sum(component_cols[name]), 1)
- self.assertEqual(
- sum(np.array(prior_scales) * component_cols[name]),
- true_priors[i],
- )
- # Check that forecast components are reasonable
- future = pd.DataFrame({
- 'ds': ['2014-06-01'],
- 'binary_feature': [0],
- 'numeric_feature': [10],
- 'numeric_feature2': [10],
- })
- with self.assertRaises(ValueError):
- m.predict(future)
- future['binary_feature2'] = 0
- fcst = m.predict(future)
- self.assertEqual(fcst.shape[1], 37)
- self.assertEqual(fcst['binary_feature'][0], 0)
- self.assertAlmostEqual(
- fcst['extra_regressors_additive'][0],
- fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
- )
- self.assertAlmostEqual(
- fcst['extra_regressors_multiplicative'][0],
- fcst['numeric_feature2'][0],
- )
- self.assertAlmostEqual(
- fcst['additive_terms'][0],
- fcst['yearly'][0] + fcst['weekly'][0]
- + fcst['extra_regressors_additive'][0],
- )
- self.assertAlmostEqual(
- fcst['multiplicative_terms'][0],
- fcst['extra_regressors_multiplicative'][0],
- )
- self.assertAlmostEqual(
- fcst['yhat'][0],
- fcst['trend'][0] * (1 + fcst['multiplicative_terms'][0])
- + fcst['additive_terms'][0],
- )
- # Check works if constant extra regressor at 0
- df['constant_feature'] = 0
- m = Prophet()
- m.add_regressor('constant_feature')
- m.fit(df)
- self.assertEqual(m.extra_regressors['constant_feature']['std'], 1)
- def test_set_seasonality_mode(self):
- # Setting attribute
- m = Prophet()
- self.assertEqual(m.seasonality_mode, 'additive')
- m = Prophet(seasonality_mode='multiplicative')
- self.assertEqual(m.seasonality_mode, 'multiplicative')
- with self.assertRaises(ValueError):
- Prophet(seasonality_mode='batman')
- def test_seasonality_modes(self):
- # Model with holidays, seasonalities, and extra regressors
- holidays = pd.DataFrame({
- 'ds': pd.to_datetime(['2016-12-25']),
- 'holiday': ['xmas'],
- 'lower_window': [-1],
- 'upper_window': [0],
- })
- m = Prophet(seasonality_mode='multiplicative', holidays=holidays)
- m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3)
- m.add_regressor('binary_feature', mode='additive')
- m.add_regressor('numeric_feature')
- # Construct seasonal features
- df = DATA.copy()
- df['binary_feature'] = [0] * 255 + [1] * 255
- df['numeric_feature'] = range(510)
- df = m.setup_dataframe(df, initialize_scales=True)
- m.history = df.copy()
- m.set_auto_seasonalities()
- seasonal_features, prior_scales, component_cols, modes = (
- m.make_all_seasonality_features(df))
- self.assertEqual(sum(component_cols['additive_terms']), 7)
- self.assertEqual(sum(component_cols['multiplicative_terms']), 29)
- self.assertEqual(
- set(modes['additive']),
- {'monthly', 'binary_feature', 'additive_terms',
- 'extra_regressors_additive'},
- )
- self.assertEqual(
- set(modes['multiplicative']),
- {'weekly', 'yearly', 'xmas', 'numeric_feature',
- 'multiplicative_terms', 'extra_regressors_multiplicative',
- 'holidays',
- },
- )
|