| 
					
				 | 
			
			
				@@ -0,0 +1,544 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ "nbformat": 4, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ "nbformat_minor": 0, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "provenance": [], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "gpuType": "T4", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "machine_shape": "hm" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  "kernelspec": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "name": "python3", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "display_name": "Python 3" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  "language_info": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "name": "python" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  "accelerator": "GPU", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  "gpuClass": "standard" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ "cells": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "!nvidia-smi" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "base_uri": "https://localhost:8080/" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "uHJROIGn3i_Z", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "outputId": "764afe17-db79-4832-e93b-5e59728de378" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "output_type": "stream", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "name": "stdout", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "text": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "Sat May  6 10:14:14 2023       \n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "+-----------------------------------------------------------------------------+\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "| NVIDIA-SMI 525.85.12    Driver Version: 525.85.12    CUDA Version: 12.0     |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "|-------------------------------+----------------------+----------------------+\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "|                               |                      |               MIG M. |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "|===============================+======================+======================|\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "| N/A   58C    P0    29W /  70W |  13785MiB / 15360MiB |      0%      Default |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "|                               |                      |                  N/A |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "+-------------------------------+----------------------+----------------------+\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "                                                                               \n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "+-----------------------------------------------------------------------------+\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "| Processes:                                                                  |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "|        ID   ID                                                   Usage      |\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "|=============================================================================|\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "+-----------------------------------------------------------------------------+\n" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "!git clone https://huggingface.co/openlm-research/open_llama_7b_preview_300bt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "PlYcNqrMqcgy" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "KQUxwEIPmF36" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "!pip install -qqq transformers==4.28.1 --progress-bar off\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "!pip install -qqq bitsandbytes==0.38.1 --progress-bar off\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "!pip install -qqq accelerate==0.18.0 --progress-bar off\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "!pip install -qqq sentencepiece==0.1.99 --progress-bar off" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "import textwrap\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "import torch\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "dIaeE5sKplgx" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "def print_response(response: str):\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    print(textwrap.fill(response, width=110))" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "R7I0fMNXxc7k" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "DEVICE = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "BOS_TOKEN_ID = 1\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "EOS_TOKEN_ID = 2\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "MAX_TOKENS = 1024" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "HtRfNE-RrDmT" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "MODEL_NAME = \"/content/open_llama_7b_preview_300bt/open_llama_7b_preview_300bt_transformers_weights\"\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "tokenizer = LlamaTokenizer.from_pretrained(MODEL_NAME, add_eos_token=True)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "model = LlamaForCausalLM.from_pretrained(\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    MODEL_NAME, local_files_only=True, torch_dtype=torch.float16, device_map=\"auto\"\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ")" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "a_8RthnX9SPG" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "tokenizer.bos_token_id = BOS_TOKEN_ID" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "UcxAGhaTVO25" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "markdown", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "## Single prompt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "oBE_HnVDKJqJ" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "prompt = \"The world's highest building is\"" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "mAzCHuY9_1sn" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "generation_config = GenerationConfig(max_new_tokens=256, temperature=0.5)" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "CLHPIWub__MW" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "inputs = tokenizer(prompt, return_tensors=\"pt\").to(model.device)" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "jmtslKI1ACcX" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "inputs" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "base_uri": "https://localhost:8080/" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "YzAmXhqok9U-", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "outputId": "ab8f39fd-18b4-4ca4-ec7d-b38c49ce31ed" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "output_type": "execute_result", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "data": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "text/plain": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "{'input_ids': tensor([[    1,   347,   925, 31889, 31842,  4454,  2203,   322,     0]],\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "       device='cuda:0'), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1]], device='cuda:0')}" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "metadata": {}, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "execution_count": 11 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "%%time\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "with torch.inference_mode():\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    tokens = model.generate(**inputs, generation_config=generation_config)" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "T4p2rFsCAHJx", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "base_uri": "https://localhost:8080/" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "outputId": "a1487161-a49f-442a-fb64-97fafd886b15" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "output_type": "stream", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "name": "stdout", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "text": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "CPU times: user 18.2 s, sys: 306 ms, total: 18.5 s\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "Wall time: 21.5 s\n" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "tokens" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "base_uri": "https://localhost:8080/" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "ceEPtizqlOJ3", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "outputId": "a87dcc6d-cb7e-42d6-b9ce-3e2076fd65f5" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "output_type": "execute_result", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "data": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "text/plain": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "tensor([[    1,   347,   925, 31889, 31842,  4454,  2203,   322,     0, 31856,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "           347,   925, 31889, 31842,  8522,   384,  2203,   322,   266,  4646,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         31892, 21527, 21880, 31856,   347,   925, 31889, 31842,  8522,   384,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "          2203,   322,   266,  4646, 31892, 21527, 21880, 31856,   347,   925,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         31889, 31842,  8522,   384,  2203,   322,   266,  4646, 31892, 21527,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         21880, 31856,   347,   925, 31889, 31842,  8522,   384,  2203,   322,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "           266,  4646, 31892, 21527, 21880, 31856,   347,   925, 31889, 31842,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "          8522,   384,  2203,   322,   266,  4646, 31892, 21527, 21880, 31856,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "           347,   925, 31889, 31842,  8522,   384,  2203,   322,   266,  4646,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         31892, 21527, 21880, 31856,   347,   925, 31889, 31842,  8522,   384,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "          2203,   322,   266,  4646, 31892, 21527, 21880, 31856,   347,   925,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         31889, 31842,  8522,   384,  2203,   322,   266,  4646, 31892, 21527,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         21880, 31856,   347,   925, 31889, 31842,  8522,   384,  2203,   322,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "           266,  4646, 31892, 21527, 21880, 31856,   347,   925, 31889, 31842,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "          8522,   384,  2203,   322,   266,  4646, 31892, 21527, 21880, 31856,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "           347,   925, 31889, 31842,  8522,   384,  2203,   322,   266,  4646,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         31892, 21527, 21880, 31856,   347,   925, 31889, 31842,  8522,   384,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "          2203,   322,   266,  4646, 31892, 21527, 21880, 31856,   347,   925,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         31889, 31842,  8522,   384,  2203,   322,   266,  4646, 31892, 21527,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         21880, 31856,   347,   925, 31889, 31842,  8522,   384,  2203,   322,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "           266,  4646, 31892, 21527, 21880, 31856,   347,   925, 31889, 31842,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "          8522,   384,  2203,   322,   266,  4646, 31892, 21527, 21880, 31856,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "           347,   925, 31889, 31842,  8522,   384,  2203,   322,   266,  4646,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         31892, 21527, 21880, 31856,   347,   925, 31889, 31842,  8522,   384,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "          2203,   322,   266,  4646, 31892, 21527, 21880, 31856,   347,   925,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         31889, 31842,  8522,   384,  2203,   322,   266,  4646, 31892, 21527,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       "         21880, 31856,   347,   925, 31889]], device='cuda:0')" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "metadata": {}, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "execution_count": 13 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "completion = tokenizer.decode(tokens[0], skip_special_tokens=True)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "print_response(completion)" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "base_uri": "https://localhost:8080/" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "LOYLu8ybAN0g", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "outputId": "bcc2a9bb-29fa-4e6e-87ec-6469002da31b" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "output_type": "stream", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "name": "stdout", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "text": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "The world's highest building is. The world's tallest building is the Burj Khalifa. The world's tallest\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "building is the Burj Khalifa. The world's tallest building is the Burj Khalifa. The world's tallest building\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "is the Burj Khalifa. The world's tallest building is the Burj Khalifa. The world's tallest building is the\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "Burj Khalifa. The world's tallest building is the Burj Khalifa. The world's tallest building is the Burj\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "Khalifa. The world's tallest building is the Burj Khalifa. The world's tallest building is the Burj Khalifa.\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "The world's tallest building is the Burj Khalifa. The world's tallest building is the Burj Khalifa. The\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "world's tallest building is the Burj Khalifa. The world's tallest building is the Burj Khalifa. The world's\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "tallest building is the Burj Khalifa. The world's tallest building is the Burj Khalifa. The world's tallest\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "building is the Burj Khalifa. The world's tallest building is the Burj Khalifa. The world'\n" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "markdown", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "## Prompting with sampling" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "NtvOWBP2KMzU" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "def top_k_sampling(logits, k=10):\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    top_k = torch.topk(logits, k)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    top_k_indices = top_k.indices\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    top_k_values = top_k.values\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    probabilities = torch.softmax(top_k_values, dim=-1)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    choice = torch.multinomial(probabilities, num_samples=1)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    token_id = int(top_k_indices[choice])\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    return token_id\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "def process_chat(\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    model: LlamaForCausalLM,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    tokenizer: LlamaTokenizer,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    prompt: str,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    max_new_tokens: int = 256,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "):\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    input_ids = tokenizer(prompt).input_ids\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    output_token_ids = list(input_ids)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    max_src_len = MAX_TOKENS - max_new_tokens - 8\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    input_ids = input_ids[-max_src_len:]\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    with torch.inference_mode():\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "        for i in range(max_new_tokens):\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "            if i == 0:\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                out = model(\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                    input_ids=torch.as_tensor([input_ids], device=DEVICE),\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                    use_cache=True,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                )\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                logits = out.logits\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                past_key_values = out.past_key_values\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "            else:\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                out = model(\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                    input_ids=torch.as_tensor([[token_id]], device=DEVICE),\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                    use_cache=True,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                    past_key_values=past_key_values,\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                )\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                logits = out.logits\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                past_key_values = out.past_key_values\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "            last_token_logits = logits[0][-1]\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "            token_id = top_k_sampling(last_token_logits)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "            output_token_ids.append(token_id)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "            if token_id == EOS_TOKEN_ID:\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "                break\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "    return tokenizer.decode(output_token_ids, skip_special_tokens=True)" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "sx_zG4GvJ7Ze" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "%%time\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "prompt = \"You're Michael G Scott from the office. What is your favorite phrase?\"\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "response = process_chat(model, tokenizer, prompt)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "print_response(response)" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "base_uri": "https://localhost:8080/" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "UACwKuSkIEI_", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "outputId": "a6ffa056-fdaf-4b07-f027-7886257a66db" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "output_type": "stream", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "name": "stdout", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "text": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "You're Michael G Scott from the office. What is your favorite phrase?. I'm a bit too old to be doing this!\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "What do you think of your character in the Office? Who is your favorite person you know who is also an actor?\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "How do you get your inspiration? How do you feel about working with John Krasinski? What is the hardest thing\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "about being in the show? What kind of a fan are you? What's your favorite thing about being an actor?\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "CPU times: user 5.44 s, sys: 0 ns, total: 5.44 s\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "Wall time: 5.46 s\n" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "prompt = \"The world's highest building is\"\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "response = process_chat(model, tokenizer, prompt)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "print_response(response)" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "base_uri": "https://localhost:8080/" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "k6tcUkdT-H-q", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "outputId": "feea72cd-bb93-490c-d0b0-3718f28e0807" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "output_type": "stream", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "name": "stdout", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "text": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "The world's highest building is tower, which is 1,336.8 meters from the ground in 2007. A building 1,336.8\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "meters high is called tallest building in history. The tallest building in the world is currently Burj Khalifa\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "(Dubai). Burj Khalifa is 829.8 meters tall. Burj Khalifa is a 77-story skyscraper. This tall building is the\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "28th tallest building in the world and the 10th highest structure in the world. Burj Khalifa is a mixed use\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "building. In addition to office space, there are apartments, hotels, shopping malls in the building. In\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "addition to being the highest building in the world, the tower Burj Khalifa was also the first building on the\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "planet to reach the height of 800 meters. This is a record that was achieved in 2010. Burj Khalifa is owned by\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "the real estate developer Emaar Properties. Burj Khalifa was developed in a record time, the building was\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "opened at 2010, but was first opened at the end of December 2010 and officially opened on January 4\n" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "prompt = \"The best way to invest $10,000 is\"\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "response = process_chat(model, tokenizer, prompt)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "print_response(response)" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "base_uri": "https://localhost:8080/" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "ByY-PuTiGtRy", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "outputId": "835e55da-831a-41d3-e064-b8c2734adf53" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "output_type": "stream", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "name": "stdout", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "text": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "The best way to invest $10,000 is The best way to invest $10,000 is to start by saving up to $5000 and then\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "buy stock that’s already cheap. This is a more conservative way of investing and you can buy a good stock for\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "a cheap price. I think you’re right, but the way you’re describing it is more like buying a stock for 50 cents\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "a share. If you look at the way that I describe it, it’s not a stock that’s a penny a share. It’s a stock\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "that’s a penny a share, so it’s a penny on a dollar. If you look at the way that I describe it, it’s a stock\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "that’s a penny on a dollar. It’s a penny on a dollar, so it’s a penny on a dollar. But if you look at it, it’s\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "a penny on a penny. I think it’s a penny on a penny. But the way you describe it is a penny on a penny. But if\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "you look at it, it’s a penny on a penny. I think it’s a penny on the dollar. But the way you describe it is a\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "penny on the penny. But\n" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "code", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "prompt = \"The best make and model v8 manual gearbox car is\"\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "response = process_chat(model, tokenizer, prompt)\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "print_response(response)" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "colab": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "base_uri": "https://localhost:8080/" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "e8lclPl1G60Y", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "outputId": "2fa65dc0-27c7-4fdf-c66e-fa7e817c7fe0" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "execution_count": null, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "outputs": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "output_type": "stream", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "name": "stdout", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     "text": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "The best make and model v8 manual gearbox car is 1968-1969 gmc sierra with 4spd manual or gm overdrive auto.\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "If you want to know how to install a manual gearbox car, please do not hesitate to contact us. If you are\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "wondering how to install a manual gearbox car, please contact us at:. If you want to know how to install a\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      "manual transaxle gearbox car, please read the following.\n" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  }, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "cell_type": "markdown", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "source": [ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "## References\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "- https://github.com/riversun/open_llama_7b_hands_on\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "- https://news.ycombinator.com/item?id=35798888\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "- https://github.com/openlm-research/open_llama\n", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "- https://huggingface.co/openlm-research/open_llama_7b_preview_300bt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   ], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   "metadata": { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    "id": "56SaOYzppR1m" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+} 
			 |