Browse Source

PEP8 changes

saleml 2 năm trước cách đây
mục cha
commit
1ce76678e1

+ 1 - 2
gym_minigrid/envs/fetch.py

@@ -100,5 +100,4 @@ register(
     numObjs=2,
 )
 
-register(id="MiniGrid-Fetch-8x8-N3-v0",
-         entry_point="gym_minigrid.envs.fetch:FetchEnv")
+register(id="MiniGrid-Fetch-8x8-N3-v0", entry_point="gym_minigrid.envs.fetch:FetchEnv")

+ 1 - 2
gym_minigrid/envs/lockedroom.py

@@ -56,8 +56,7 @@ class LockedRoomEnv(MiniGridEnv):
 
             roomW = lWallIdx + 1
             roomH = height // 3 + 1
-            self.rooms.append(LockedRoom(
-                (0, j), (roomW, roomH), (lWallIdx, j + 3)))
+            self.rooms.append(LockedRoom((0, j), (roomW, roomH), (lWallIdx, j + 3)))
             self.rooms.append(
                 LockedRoom((rWallIdx, j), (roomW, roomH), (rWallIdx, j + 3))
             )

+ 6 - 12
gym_minigrid/envs/multiroom.py

@@ -37,8 +37,7 @@ class MultiRoomEnv(MiniGridEnv):
         while len(roomList) < numRooms:
             curRoomList = []
 
-            entryDoorPos = (self._rand_int(0, width - 2),
-                            self._rand_int(0, width - 2))
+            entryDoorPos = (self._rand_int(0, width - 2), self._rand_int(0, width - 2))
 
             # Recursively place the rooms
             self._placeRoom(
@@ -90,8 +89,7 @@ class MultiRoomEnv(MiniGridEnv):
                 doorColor = self._rand_elem(sorted(doorColors))
 
                 entryDoor = Door(doorColor)
-                self.grid.set(
-                    room.entryDoorPos[0], room.entryDoorPos[1], entryDoor)
+                self.grid.set(room.entryDoorPos[0], room.entryDoorPos[1], entryDoor)
                 prevDoorColor = doorColor
 
                 prevRoom = roomList[idx - 1]
@@ -101,8 +99,7 @@ class MultiRoomEnv(MiniGridEnv):
         self.place_agent(roomList[0].top, roomList[0].size)
 
         # Place the final goal in the last room
-        self.goal_pos = self.place_obj(
-            Goal(), roomList[-1].top, roomList[-1].size)
+        self.goal_pos = self.place_obj(Goal(), roomList[-1].top, roomList[-1].size)
 
         self.mission = "traverse the rooms to get to the goal"
 
@@ -156,8 +153,7 @@ class MultiRoomEnv(MiniGridEnv):
                 return False
 
         # Add this room to the list
-        roomList.append(
-            MultiRoom((topX, topY), (sizeX, sizeY), entryDoorPos, None))
+        roomList.append(MultiRoom((topX, topY), (sizeX, sizeY), entryDoorPos, None))
 
         # If this was the last room, stop
         if numLeft == 1:
@@ -175,12 +171,10 @@ class MultiRoomEnv(MiniGridEnv):
             # Pick the exit door position
             # Exit on right wall
             if exitDoorWall == 0:
-                exitDoorPos = (topX + sizeX - 1, topY +
-                               self._rand_int(1, sizeY - 1))
+                exitDoorPos = (topX + sizeX - 1, topY + self._rand_int(1, sizeY - 1))
             # Exit on south wall
             elif exitDoorWall == 1:
-                exitDoorPos = (
-                    topX + self._rand_int(1, sizeX - 1), topY + sizeY - 1)
+                exitDoorPos = (topX + self._rand_int(1, sizeX - 1), topY + sizeY - 1)
             # Exit on left wall
             elif exitDoorWall == 2:
                 exitDoorPos = (topX, topY + self._rand_int(1, sizeY - 1))

+ 4 - 5
gym_minigrid/envs/obstructedmaze.py

@@ -67,8 +67,7 @@ class ObstructedMazeEnv(RoomGrid):
         if blocked:
             vec = DIR_TO_VEC[door_idx]
             blocking_ball = Ball(self.blocking_ball_color) if blocked else None
-            self.grid.set(door_pos[0] - vec[0],
-                          door_pos[1] - vec[1], blocking_ball)
+            self.grid.set(door_pos[0] - vec[0], door_pos[1] - vec[1], blocking_ball)
 
         if locked:
             obj = Key(door.color)
@@ -106,8 +105,7 @@ class ObstructedMaze_1Dlhb(ObstructedMazeEnv):
             blocked=self.blocked,
         )
 
-        self.obj, _ = self.add_object(
-            1, 0, "ball", color=self.ball_to_find_color)
+        self.obj, _ = self.add_object(1, 0, "ball", color=self.ball_to_find_color)
         self.place_agent(0, 0)
 
 
@@ -166,7 +164,8 @@ class ObstructedMaze_Full(ObstructedMazeEnv):
         ball_room = self._rand_elem(corners)
 
         self.obj, _ = self.add_object(
-            ball_room[0], ball_room[1], "ball", color=self.ball_to_find_color)
+            ball_room[0], ball_room[1], "ball", color=self.ball_to_find_color
+        )
         self.place_agent(*self.agent_room)
 
 

+ 1 - 2
gym_minigrid/envs/unlock.py

@@ -41,5 +41,4 @@ class UnlockEnv(RoomGrid):
         return obs, reward, terminated, truncated, info
 
 
-register(id="MiniGrid-Unlock-v0",
-         entry_point="gym_minigrid.envs.unlock:UnlockEnv")
+register(id="MiniGrid-Unlock-v0", entry_point="gym_minigrid.envs.unlock:UnlockEnv")

+ 15 - 26
gym_minigrid/minigrid.py

@@ -1,12 +1,13 @@
 import hashlib
 import math
 import string
+from abc import abstractmethod
 from enum import IntEnum
 
 import gym
 import numpy as np
 from gym import spaces
-from abc import abstractmethod
+
 # Size in pixels of a tile in the full-scale human view
 from gym_minigrid.rendering import (
     downsample,
@@ -34,8 +35,7 @@ COLORS = {
 COLOR_NAMES = sorted(list(COLORS.keys()))
 
 # Used to map colors to integers
-COLOR_TO_IDX = {"red": 0, "green": 1, "blue": 2,
-                "purple": 3, "yellow": 4, "grey": 5}
+COLOR_TO_IDX = {"red": 0, "green": 1, "blue": 2, "purple": 3, "yellow": 4, "grey": 5}
 
 IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
 
@@ -203,14 +203,10 @@ class Lava(WorldObj):
         for i in range(3):
             ylo = 0.3 + 0.2 * i
             yhi = 0.4 + 0.2 * i
-            fill_coords(img, point_in_line(
-                0.1, ylo, 0.3, yhi, r=0.03), (0, 0, 0))
-            fill_coords(img, point_in_line(
-                0.3, yhi, 0.5, ylo, r=0.03), (0, 0, 0))
-            fill_coords(img, point_in_line(
-                0.5, ylo, 0.7, yhi, r=0.03), (0, 0, 0))
-            fill_coords(img, point_in_line(
-                0.7, yhi, 0.9, ylo, r=0.03), (0, 0, 0))
+            fill_coords(img, point_in_line(0.1, ylo, 0.3, yhi, r=0.03), (0, 0, 0))
+            fill_coords(img, point_in_line(0.3, yhi, 0.5, ylo, r=0.03), (0, 0, 0))
+            fill_coords(img, point_in_line(0.5, ylo, 0.7, yhi, r=0.03), (0, 0, 0))
+            fill_coords(img, point_in_line(0.7, yhi, 0.9, ylo, r=0.03), (0, 0, 0))
 
 
 class Wall(WorldObj):
@@ -273,8 +269,7 @@ class Door(WorldObj):
         # Door frame and door
         if self.is_locked:
             fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
-            fill_coords(img, point_in_rect(
-                0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c))
+            fill_coords(img, point_in_rect(0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c))
 
             # Draw key slot
             fill_coords(img, point_in_rect(0.52, 0.75, 0.50, 0.56), c)
@@ -491,8 +486,7 @@ class Grid:
             )
 
             # Rotate the agent based on its direction
-            tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5,
-                               theta=0.5 * math.pi * agent_dir)
+            tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5, theta=0.5 * math.pi * agent_dir)
             fill_coords(img, tri_fn, (255, 0, 0))
 
         # Highlight the cell if needed
@@ -515,8 +509,7 @@ class Grid:
         """
 
         if highlight_mask is None:
-            highlight_mask = np.zeros(
-                shape=(self.width, self.height), dtype=bool)
+            highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
 
         # Compute the total grid size
         width_px = self.width * tile_size
@@ -768,8 +761,7 @@ class MiniGridEnv(gym.Env):
         """
         sample_hash = hashlib.sha256()
 
-        to_encode = [self.grid.encode().tolist(), self.agent_pos,
-                     self.agent_dir]
+        to_encode = [self.grid.encode().tolist(), self.agent_pos, self.agent_dir]
         for item in to_encode:
             sample_hash.update(str(item).encode("utf8"))
 
@@ -936,10 +928,8 @@ class MiniGridEnv(gym.Env):
 
             pos = np.array(
                 (
-                    self._rand_int(top[0], min(
-                        top[0] + size[0], self.grid.width)),
-                    self._rand_int(top[1], min(
-                        top[1] + size[1], self.grid.height)),
+                    self._rand_int(top[0], min(top[0] + size[0], self.grid.width)),
+                    self._rand_int(top[1], min(top[1] + size[1], self.grid.height)),
                 )
             )
 
@@ -1173,7 +1163,7 @@ class MiniGridEnv(gym.Env):
             pass
 
         else:
-            raise ValueError('Unknown action: {}'.format(action))
+            raise ValueError(f"Unknown action: {action}")
 
         if self.step_count >= self.max_steps:
             truncated = True
@@ -1233,8 +1223,7 @@ class MiniGridEnv(gym.Env):
         # - an image (partially observable view of the environment)
         # - the agent's direction/orientation (acting as a compass)
         # - a textual mission string (instructions for the agent)
-        obs = {"image": image, "direction": self.agent_dir,
-               "mission": self.mission}
+        obs = {"image": image, "direction": self.agent_dir, "mission": self.mission}
 
         return obs
 

+ 5 - 6
run_tests.py

@@ -133,11 +133,9 @@ for env_idx, env_name in enumerate(env_list):
     env.close()
 
     # Test the wrappers return proper observation spaces.
-    wrappers = [RGBImgObsWrapper,
-                RGBImgPartialObsWrapper, OneHotPartialObsWrapper]
+    wrappers = [RGBImgObsWrapper, RGBImgPartialObsWrapper, OneHotPartialObsWrapper]
     for wrapper in wrappers:
-        env = wrapper(
-            gym.make(env_name, render_mode="rgb_array", new_step_api=True))
+        env = wrapper(gym.make(env_name, render_mode="rgb_array", new_step_api=True))
         obs_space, wrapper_name = env.observation_space, wrapper.__name__
         assert isinstance(
             obs_space, spaces.Dict
@@ -186,8 +184,9 @@ wrappers = [
 ]
 for wrapper in wrappers:
     env1 = wrapper(EmptyEnvWithExtraObs(render_mode="rgb_array"))
-    env2 = wrapper(gym.make("MiniGrid-Empty-5x5-v0",
-                   render_mode="rgb_array", new_step_api=True))
+    env2 = wrapper(
+        gym.make("MiniGrid-Empty-5x5-v0", render_mode="rgb_array", new_step_api=True)
+    )
 
     obs1 = env1.reset(seed=0)
     obs2 = env2.reset(seed=0)