|
@@ -28,10 +28,10 @@ pip3 install -e .
|
|
|
```
|
|
|
|
|
|
Optionally, if you wish use the reinforcement learning code included
|
|
|
-under [/basicrl](/basicrl), you can install its dependencies as follows:
|
|
|
+under [/pytorch-rl](/pytorch-rl), you can install its dependencies as follows:
|
|
|
|
|
|
```
|
|
|
-cd basicrl
|
|
|
+cd pytorch-rl
|
|
|
|
|
|
# PyTorch
|
|
|
conda install pytorch torchvision -c soumith
|
|
@@ -49,7 +49,7 @@ cd ..
|
|
|
pip3 install -r requirements.txt
|
|
|
```
|
|
|
|
|
|
-Note: the basicrl code is a custom fork of [this repository](https://github.com/ikostrikov/pytorch-a2c-ppo-acktr),
|
|
|
+Note: the pytorch-rl code is a custom fork of [this repository](https://github.com/ikostrikov/pytorch-a2c-ppo-acktr),
|
|
|
which was modified to work with this environment.
|
|
|
|
|
|
## Basic Usage
|
|
@@ -66,17 +66,17 @@ The environment being run can be selected with the `--env-name` option, eg:
|
|
|
./standalone.py --env-name MiniGrid-Empty-8x8-v0
|
|
|
```
|
|
|
|
|
|
-Basic reinforcement learning code is provided in the `basicrl` subdirectory.
|
|
|
+Basic reinforcement learning code is provided in the `pytorch-rl` subdirectory.
|
|
|
You can perform training using the ACKTR algorithm with:
|
|
|
|
|
|
```
|
|
|
-python3 basicrl/main.py --env-name MiniGrid-Empty-6x6-v0 --no-vis --num-processes 32 --algo acktr
|
|
|
+python3 pytorch-rl/main.py --env-name MiniGrid-Empty-6x6-v0 --no-vis --num-processes 32 --algo acktr
|
|
|
```
|
|
|
|
|
|
You can view the result of training using the `enjoy.py` script:
|
|
|
|
|
|
```
|
|
|
-python3 basicrl/enjoy.py --env-name MiniGrid-Empty-6x6-v0 --load-dir ./trained_models/acktr
|
|
|
+python3 pytorch-rl/enjoy.py --env-name MiniGrid-Empty-6x6-v0 --load-dir ./trained_models/acktr
|
|
|
```
|
|
|
|
|
|
## Design
|