import hashlib import math from abc import abstractmethod from enum import IntEnum from typing import Any, Callable, Optional, Union import gym import numpy as np from gym import spaces from gym.utils import seeding # Size in pixels of a tile in the full-scale human view from gym_minigrid.rendering import ( downsample, fill_coords, highlight_img, point_in_circle, point_in_line, point_in_rect, point_in_triangle, rotate_fn, ) from gym_minigrid.window import Window TILE_PIXELS = 32 # Map of color names to RGB values COLORS = { "red": np.array([255, 0, 0]), "green": np.array([0, 255, 0]), "blue": np.array([0, 0, 255]), "purple": np.array([112, 39, 195]), "yellow": np.array([255, 255, 0]), "grey": np.array([100, 100, 100]), } COLOR_NAMES = sorted(list(COLORS.keys())) # Used to map colors to integers COLOR_TO_IDX = {"red": 0, "green": 1, "blue": 2, "purple": 3, "yellow": 4, "grey": 5} IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys())) # Map of object type to integers OBJECT_TO_IDX = { "unseen": 0, "empty": 1, "wall": 2, "floor": 3, "door": 4, "key": 5, "ball": 6, "box": 7, "goal": 8, "lava": 9, "agent": 10, } IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys())) # Map of state names to integers STATE_TO_IDX = { "open": 0, "closed": 1, "locked": 2, } # Map of agent direction indices to vectors DIR_TO_VEC = [ # Pointing right (positive X) np.array((1, 0)), # Down (positive Y) np.array((0, 1)), # Pointing left (negative X) np.array((-1, 0)), # Up (negative Y) np.array((0, -1)), ] def check_if_no_duplicate(duplicate_list: list) -> bool: """Check if given list contains any duplicates""" return len(set(duplicate_list)) == len(duplicate_list) class MissionSpace(spaces.Space[str]): r"""A space representing a mission for the Gym-Minigrid environments. The space allows generating random mission strings constructed with an input placeholder list. Example Usage:: >>> observation_space = MissionSpace(mission_func=lambda color: f"Get the {color} ball.", ordered_placeholders=[["green", "blue"]]) >>> observation_space.sample() "Get the green ball." >>> observation_space = MissionSpace(mission_func=lambda : "Get the ball."., ordered_placeholders=None) >>> observation_space.sample() "Get the ball." """ def __init__( self, mission_func: Callable[..., str], ordered_placeholders: Optional["list[list[str]]"] = None, seed: Optional[Union[int, seeding.RandomNumberGenerator]] = None, ): r"""Constructor of :class:`MissionSpace` space. Args: mission_func (lambda _placeholders(str): _mission(str)): Function that generates a mission string from random placeholders. ordered_placeholders (Optional["list[list[str]]"]): List of lists of placeholders ordered in placing order in the mission function mission_func. seed: seed: The seed for sampling from the space. """ # Check that the ordered placeholders and mission function are well defined. if ordered_placeholders is not None: assert ( len(ordered_placeholders) == mission_func.__code__.co_argcount ), f"The number of placeholders {len(ordered_placeholders)} is different from the number of parameters in the mission function {mission_func.__code__.co_argcount}." for placeholder_list in ordered_placeholders: assert check_if_no_duplicate( placeholder_list ), "Make sure that the placeholders don't have any duplicate values." else: assert ( mission_func.__code__.co_argcount == 0 ), f"If the ordered placeholders are {ordered_placeholders}, the mission function shouldn't have any parameters." self.ordered_placeholders = ordered_placeholders self.mission_func = mission_func super().__init__(dtype=str, seed=seed) # Check that mission_func returns a string sampled_mission = self.sample() assert isinstance( sampled_mission, str ), f"mission_func must return type str not {type(sampled_mission)}" def sample(self) -> str: """Sample a random mission string.""" if self.ordered_placeholders is not None: placeholders = [] for rand_var_list in self.ordered_placeholders: idx = self.np_random.integers(0, len(rand_var_list)) placeholders.append(rand_var_list[idx]) return self.mission_func(*placeholders) else: return self.mission_func() def contains(self, x: Any) -> bool: """Return boolean specifying if x is a valid member of this space.""" # Store a list of all the placeholders from self.ordered_placeholders that appear in x if self.ordered_placeholders is not None: check_placeholder_list = [] for placeholder_list in self.ordered_placeholders: for placeholder in placeholder_list: if placeholder in x: check_placeholder_list.append(placeholder) # Remove duplicates from the list check_placeholder_list = list(set(check_placeholder_list)) start_id_placeholder = [] end_id_placeholder = [] # Get the starting and ending id of the identified placeholders with possible duplicates new_check_placeholder_list = [] for placeholder in check_placeholder_list: new_start_id_placeholder = [ i for i in range(len(x)) if x.startswith(placeholder, i) ] new_check_placeholder_list += [placeholder] * len( new_start_id_placeholder ) end_id_placeholder += [ start_id + len(placeholder) - 1 for start_id in new_start_id_placeholder ] start_id_placeholder += new_start_id_placeholder # Order by starting id the placeholders ordered_placeholder_list = sorted( zip( start_id_placeholder, end_id_placeholder, new_check_placeholder_list ) ) # Check for repeated placeholders contained in each other remove_placeholder_id = [] for i, placeholder_1 in enumerate(ordered_placeholder_list): starting_id = i + 1 for j, placeholder_2 in enumerate( ordered_placeholder_list[starting_id:] ): # Check if place holder ids overlap and keep the longest if max(placeholder_1[0], placeholder_2[0]) < min( placeholder_1[1], placeholder_2[1] ): remove_placeholder = min( placeholder_1[2], placeholder_2[2], key=len ) if remove_placeholder == placeholder_1[2]: remove_placeholder_id.append(i) else: remove_placeholder_id.append(i + j + 1) for id in remove_placeholder_id: del ordered_placeholder_list[id] final_placeholders = [ placeholder[2] for placeholder in ordered_placeholder_list ] # Check that the identified final placeholders are in the same order as the original placeholders. for orered_placeholder, final_placeholder in zip( self.ordered_placeholders, final_placeholders ): if final_placeholder in orered_placeholder: continue else: return False try: mission_string_with_placeholders = self.mission_func( *final_placeholders ) except Exception as e: print( f"{x} is not contained in MissionSpace due to the following exception: {e}" ) return False return bool(mission_string_with_placeholders == x) else: return bool(self.mission_func() == x) def __repr__(self) -> str: """Gives a string representation of this space.""" return f"MissionSpace({self.mission_func}, {self.ordered_placeholders})" def __eq__(self, other) -> bool: """Check whether ``other`` is equivalent to this instance.""" if isinstance(other, MissionSpace): # Check that place holder lists are the same if self.ordered_placeholders is not None: # Check length if (len(self.order_placeholder) == len(other.order_placeholder)) and ( all( set(i) == set(j) for i, j in zip(self.order_placeholder, other.order_placeholder) ) ): # Check mission string is the same with dummy space placeholders test_placeholders = [""] * len(self.order_placeholder) mission = self.mission_func(*test_placeholders) other_mission = other.mission_func(*test_placeholders) return mission == other_mission else: # Check that other is also None if other.ordered_placeholders is None: # Check mission string is the same mission = self.mission_func() other_mission = other.mission_func() return mission == other_mission # If none of the statements above return then False return False class WorldObj: """ Base class for grid world objects """ def __init__(self, type, color): assert type in OBJECT_TO_IDX, type assert color in COLOR_TO_IDX, color self.type = type self.color = color self.contains = None # Initial position of the object self.init_pos = None # Current position of the object self.cur_pos = None def can_overlap(self): """Can the agent overlap with this?""" return False def can_pickup(self): """Can the agent pick this up?""" return False def can_contain(self): """Can this contain another object?""" return False def see_behind(self): """Can the agent see behind this object?""" return True def toggle(self, env, pos): """Method to trigger/toggle an action this object performs""" return False def encode(self): """Encode the a description of this object as a 3-tuple of integers""" return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], 0) @staticmethod def decode(type_idx, color_idx, state): """Create an object from a 3-tuple state description""" obj_type = IDX_TO_OBJECT[type_idx] color = IDX_TO_COLOR[color_idx] if obj_type == "empty" or obj_type == "unseen": return None # State, 0: open, 1: closed, 2: locked is_open = state == 0 is_locked = state == 2 if obj_type == "wall": v = Wall(color) elif obj_type == "floor": v = Floor(color) elif obj_type == "ball": v = Ball(color) elif obj_type == "key": v = Key(color) elif obj_type == "box": v = Box(color) elif obj_type == "door": v = Door(color, is_open, is_locked) elif obj_type == "goal": v = Goal() elif obj_type == "lava": v = Lava() else: assert False, "unknown object type in decode '%s'" % obj_type return v def render(self, r): """Draw this object with the given renderer""" raise NotImplementedError class Goal(WorldObj): def __init__(self): super().__init__("goal", "green") def can_overlap(self): return True def render(self, img): fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color]) class Floor(WorldObj): """ Colored floor tile the agent can walk over """ def __init__(self, color="blue"): super().__init__("floor", color) def can_overlap(self): return True def render(self, img): # Give the floor a pale color color = COLORS[self.color] / 2 fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color) class Lava(WorldObj): def __init__(self): super().__init__("lava", "red") def can_overlap(self): return True def render(self, img): c = (255, 128, 0) # Background color fill_coords(img, point_in_rect(0, 1, 0, 1), c) # Little waves for i in range(3): ylo = 0.3 + 0.2 * i yhi = 0.4 + 0.2 * i fill_coords(img, point_in_line(0.1, ylo, 0.3, yhi, r=0.03), (0, 0, 0)) fill_coords(img, point_in_line(0.3, yhi, 0.5, ylo, r=0.03), (0, 0, 0)) fill_coords(img, point_in_line(0.5, ylo, 0.7, yhi, r=0.03), (0, 0, 0)) fill_coords(img, point_in_line(0.7, yhi, 0.9, ylo, r=0.03), (0, 0, 0)) class Wall(WorldObj): def __init__(self, color="grey"): super().__init__("wall", color) def see_behind(self): return False def render(self, img): fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color]) class Door(WorldObj): def __init__(self, color, is_open=False, is_locked=False): super().__init__("door", color) self.is_open = is_open self.is_locked = is_locked def can_overlap(self): """The agent can only walk over this cell when the door is open""" return self.is_open def see_behind(self): return self.is_open def toggle(self, env, pos): # If the player has the right key to open the door if self.is_locked: if isinstance(env.carrying, Key) and env.carrying.color == self.color: self.is_locked = False self.is_open = True return True return False self.is_open = not self.is_open return True def encode(self): """Encode the a description of this object as a 3-tuple of integers""" # State, 0: open, 1: closed, 2: locked if self.is_open: state = 0 elif self.is_locked: state = 2 # if door is closed and unlocked elif not self.is_open: state = 1 else: raise ValueError( f"There is no possible state encoding for the state:\n -Door Open: {self.is_open}\n -Door Closed: {not self.is_open}\n -Door Locked: {self.is_locked}" ) return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state) def render(self, img): c = COLORS[self.color] if self.is_open: fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c) fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0, 0, 0)) return # Door frame and door if self.is_locked: fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c) fill_coords(img, point_in_rect(0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c)) # Draw key slot fill_coords(img, point_in_rect(0.52, 0.75, 0.50, 0.56), c) else: fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c) fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0, 0, 0)) fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c) fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0, 0, 0)) # Draw door handle fill_coords(img, point_in_circle(cx=0.75, cy=0.50, r=0.08), c) class Key(WorldObj): def __init__(self, color="blue"): super().__init__("key", color) def can_pickup(self): return True def render(self, img): c = COLORS[self.color] # Vertical quad fill_coords(img, point_in_rect(0.50, 0.63, 0.31, 0.88), c) # Teeth fill_coords(img, point_in_rect(0.38, 0.50, 0.59, 0.66), c) fill_coords(img, point_in_rect(0.38, 0.50, 0.81, 0.88), c) # Ring fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.190), c) fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.064), (0, 0, 0)) class Ball(WorldObj): def __init__(self, color="blue"): super().__init__("ball", color) def can_pickup(self): return True def render(self, img): fill_coords(img, point_in_circle(0.5, 0.5, 0.31), COLORS[self.color]) class Box(WorldObj): def __init__(self, color, contains=None): super().__init__("box", color) self.contains = contains def can_pickup(self): return True def render(self, img): c = COLORS[self.color] # Outline fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c) fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0, 0, 0)) # Horizontal slit fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c) def toggle(self, env, pos): # Replace the box by its contents env.grid.set(*pos, self.contains) return True class Grid: """ Represent a grid and operations on it """ # Static cache of pre-renderer tiles tile_cache = {} def __init__(self, width, height): assert width >= 3 assert height >= 3 self.width = width self.height = height self.grid = [None] * width * height def __contains__(self, key): if isinstance(key, WorldObj): for e in self.grid: if e is key: return True elif isinstance(key, tuple): for e in self.grid: if e is None: continue if (e.color, e.type) == key: return True if key[0] is None and key[1] == e.type: return True return False def __eq__(self, other): grid1 = self.encode() grid2 = other.encode() return np.array_equal(grid2, grid1) def __ne__(self, other): return not self == other def copy(self): from copy import deepcopy return deepcopy(self) def set(self, i, j, v): assert i >= 0 and i < self.width assert j >= 0 and j < self.height self.grid[j * self.width + i] = v def get(self, i, j): assert i >= 0 and i < self.width assert j >= 0 and j < self.height return self.grid[j * self.width + i] def horz_wall(self, x, y, length=None, obj_type=Wall): if length is None: length = self.width - x for i in range(0, length): self.set(x + i, y, obj_type()) def vert_wall(self, x, y, length=None, obj_type=Wall): if length is None: length = self.height - y for j in range(0, length): self.set(x, y + j, obj_type()) def wall_rect(self, x, y, w, h): self.horz_wall(x, y, w) self.horz_wall(x, y + h - 1, w) self.vert_wall(x, y, h) self.vert_wall(x + w - 1, y, h) def rotate_left(self): """ Rotate the grid to the left (counter-clockwise) """ grid = Grid(self.height, self.width) for i in range(self.width): for j in range(self.height): v = self.get(i, j) grid.set(j, grid.height - 1 - i, v) return grid def slice(self, topX, topY, width, height): """ Get a subset of the grid """ grid = Grid(width, height) for j in range(0, height): for i in range(0, width): x = topX + i y = topY + j if x >= 0 and x < self.width and y >= 0 and y < self.height: v = self.get(x, y) else: v = Wall() grid.set(i, j, v) return grid @classmethod def render_tile( cls, obj, agent_dir=None, highlight=False, tile_size=TILE_PIXELS, subdivs=3 ): """ Render a tile and cache the result """ # Hash map lookup key for the cache key = (agent_dir, highlight, tile_size) key = obj.encode() + key if obj else key if key in cls.tile_cache: return cls.tile_cache[key] img = np.zeros( shape=(tile_size * subdivs, tile_size * subdivs, 3), dtype=np.uint8 ) # Draw the grid lines (top and left edges) fill_coords(img, point_in_rect(0, 0.031, 0, 1), (100, 100, 100)) fill_coords(img, point_in_rect(0, 1, 0, 0.031), (100, 100, 100)) if obj is not None: obj.render(img) # Overlay the agent on top if agent_dir is not None: tri_fn = point_in_triangle( (0.12, 0.19), (0.87, 0.50), (0.12, 0.81), ) # Rotate the agent based on its direction tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5, theta=0.5 * math.pi * agent_dir) fill_coords(img, tri_fn, (255, 0, 0)) # Highlight the cell if needed if highlight: highlight_img(img) # Downsample the image to perform supersampling/anti-aliasing img = downsample(img, subdivs) # Cache the rendered tile cls.tile_cache[key] = img return img def render(self, tile_size, agent_pos=None, agent_dir=None, highlight_mask=None): """ Render this grid at a given scale :param r: target renderer object :param tile_size: tile size in pixels """ if highlight_mask is None: highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool) # Compute the total grid size width_px = self.width * tile_size height_px = self.height * tile_size img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8) # Render the grid for j in range(0, self.height): for i in range(0, self.width): cell = self.get(i, j) agent_here = np.array_equal(agent_pos, (i, j)) tile_img = Grid.render_tile( cell, agent_dir=agent_dir if agent_here else None, highlight=highlight_mask[i, j], tile_size=tile_size, ) ymin = j * tile_size ymax = (j + 1) * tile_size xmin = i * tile_size xmax = (i + 1) * tile_size img[ymin:ymax, xmin:xmax, :] = tile_img return img def encode(self, vis_mask=None): """ Produce a compact numpy encoding of the grid """ if vis_mask is None: vis_mask = np.ones((self.width, self.height), dtype=bool) array = np.zeros((self.width, self.height, 3), dtype="uint8") for i in range(self.width): for j in range(self.height): if vis_mask[i, j]: v = self.get(i, j) if v is None: array[i, j, 0] = OBJECT_TO_IDX["empty"] array[i, j, 1] = 0 array[i, j, 2] = 0 else: array[i, j, :] = v.encode() return array @staticmethod def decode(array): """ Decode an array grid encoding back into a grid """ width, height, channels = array.shape assert channels == 3 vis_mask = np.ones(shape=(width, height), dtype=bool) grid = Grid(width, height) for i in range(width): for j in range(height): type_idx, color_idx, state = array[i, j] v = WorldObj.decode(type_idx, color_idx, state) grid.set(i, j, v) vis_mask[i, j] = type_idx != OBJECT_TO_IDX["unseen"] return grid, vis_mask def process_vis(self, agent_pos): mask = np.zeros(shape=(self.width, self.height), dtype=bool) mask[agent_pos[0], agent_pos[1]] = True for j in reversed(range(0, self.height)): for i in range(0, self.width - 1): if not mask[i, j]: continue cell = self.get(i, j) if cell and not cell.see_behind(): continue mask[i + 1, j] = True if j > 0: mask[i + 1, j - 1] = True mask[i, j - 1] = True for i in reversed(range(1, self.width)): if not mask[i, j]: continue cell = self.get(i, j) if cell and not cell.see_behind(): continue mask[i - 1, j] = True if j > 0: mask[i - 1, j - 1] = True mask[i, j - 1] = True for j in range(0, self.height): for i in range(0, self.width): if not mask[i, j]: self.set(i, j, None) return mask class MiniGridEnv(gym.Env): """ 2D grid world game environment """ metadata = { # Deprecated: use 'render_modes' instead "render.modes": ["human", "rgb_array"], "video.frames_per_second": 10, # Deprecated: use 'render_fps' instead "render_modes": ["human", "rgb_array", "single_rgb_array"], "render_fps": 10, } # Enumeration of possible actions class Actions(IntEnum): # Turn left, turn right, move forward left = 0 right = 1 forward = 2 # Pick up an object pickup = 3 # Drop an object drop = 4 # Toggle/activate an object toggle = 5 # Done completing task done = 6 def __init__( self, mission_space: MissionSpace, grid_size: int = None, width: int = None, height: int = None, max_steps: int = 100, see_through_walls: bool = False, agent_view_size: int = 7, highlight: bool = True, tile_size: int = TILE_PIXELS, **kwargs, ): # Initialize mission self.mission = mission_space.sample() # Can't set both grid_size and width/height if grid_size: assert width is None and height is None width = grid_size height = grid_size # Action enumeration for this environment self.actions = MiniGridEnv.Actions # Actions are discrete integer values self.action_space = spaces.Discrete(len(self.actions)) # Number of cells (width and height) in the agent view assert agent_view_size % 2 == 1 assert agent_view_size >= 3 self.agent_view_size = agent_view_size # Observations are dictionaries containing an # encoding of the grid and a textual 'mission' string image_observation_space = spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, 3), dtype="uint8", ) self.observation_space = spaces.Dict( { "image": image_observation_space, "direction": spaces.Discrete(4), "mission": mission_space, } ) # Range of possible rewards self.reward_range = (0, 1) self.window: Window = None # Environment configuration self.width = width self.height = height self.max_steps = max_steps self.see_through_walls = see_through_walls # Current position and direction of the agent self.agent_pos: np.ndarray = None self.agent_dir: int = None # Initialize the state self.reset() def reset(self, *, seed=None, return_info=False, options=None): super().reset(seed=seed) # Current position and direction of the agent self.agent_pos = None self.agent_dir = None # Generate a new random grid at the start of each episode self._gen_grid(self.width, self.height) # These fields should be defined by _gen_grid assert self.agent_pos is not None assert self.agent_dir is not None # Check that the agent doesn't overlap with an object start_cell = self.grid.get(*self.agent_pos) assert start_cell is None or start_cell.can_overlap() # Item picked up, being carried, initially nothing self.carrying = None # Step count since episode start self.step_count = 0 # Return first observation obs = self.gen_obs() if not return_info: return obs else: return obs, {} def hash(self, size=16): """Compute a hash that uniquely identifies the current state of the environment. :param size: Size of the hashing """ sample_hash = hashlib.sha256() to_encode = [self.grid.encode().tolist(), self.agent_pos, self.agent_dir] for item in to_encode: sample_hash.update(str(item).encode("utf8")) return sample_hash.hexdigest()[:size] @property def steps_remaining(self): return self.max_steps - self.step_count def __str__(self): """ Produce a pretty string of the environment's grid along with the agent. A grid cell is represented by 2-character string, the first one for the object and the second one for the color. """ # Map of object types to short string OBJECT_TO_STR = { "wall": "W", "floor": "F", "door": "D", "key": "K", "ball": "A", "box": "B", "goal": "G", "lava": "V", } # Map agent's direction to short string AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"} str = "" for j in range(self.grid.height): for i in range(self.grid.width): if i == self.agent_pos[0] and j == self.agent_pos[1]: str += 2 * AGENT_DIR_TO_STR[self.agent_dir] continue c = self.grid.get(i, j) if c is None: str += " " continue if c.type == "door": if c.is_open: str += "__" elif c.is_locked: str += "L" + c.color[0].upper() else: str += "D" + c.color[0].upper() continue str += OBJECT_TO_STR[c.type] + c.color[0].upper() if j < self.grid.height - 1: str += "\n" return str @abstractmethod def _gen_grid(self, width, height): pass def _reward(self): """ Compute the reward to be given upon success """ return 1 - 0.9 * (self.step_count / self.max_steps) def _rand_int(self, low, high): """ Generate random integer in [low,high[ """ return self.np_random.integers(low, high) def _rand_float(self, low, high): """ Generate random float in [low,high[ """ return self.np_random.uniform(low, high) def _rand_bool(self): """ Generate random boolean value """ return self.np_random.integers(0, 2) == 0 def _rand_elem(self, iterable): """ Pick a random element in a list """ lst = list(iterable) idx = self._rand_int(0, len(lst)) return lst[idx] def _rand_subset(self, iterable, num_elems): """ Sample a random subset of distinct elements of a list """ lst = list(iterable) assert num_elems <= len(lst) out = [] while len(out) < num_elems: elem = self._rand_elem(lst) lst.remove(elem) out.append(elem) return out def _rand_color(self): """ Generate a random color name (string) """ return self._rand_elem(COLOR_NAMES) def _rand_pos(self, xLow, xHigh, yLow, yHigh): """ Generate a random (x,y) position tuple """ return ( self.np_random.integers(xLow, xHigh), self.np_random.integers(yLow, yHigh), ) def place_obj(self, obj, top=None, size=None, reject_fn=None, max_tries=math.inf): """ Place an object at an empty position in the grid :param top: top-left position of the rectangle where to place :param size: size of the rectangle where to place :param reject_fn: function to filter out potential positions """ if top is None: top = (0, 0) else: top = (max(top[0], 0), max(top[1], 0)) if size is None: size = (self.grid.width, self.grid.height) num_tries = 0 while True: # This is to handle with rare cases where rejection sampling # gets stuck in an infinite loop if num_tries > max_tries: raise RecursionError("rejection sampling failed in place_obj") num_tries += 1 pos = np.array( ( self._rand_int(top[0], min(top[0] + size[0], self.grid.width)), self._rand_int(top[1], min(top[1] + size[1], self.grid.height)), ) ) # Don't place the object on top of another object if self.grid.get(*pos) is not None: continue # Don't place the object where the agent is if np.array_equal(pos, self.agent_pos): continue # Check if there is a filtering criterion if reject_fn and reject_fn(self, pos): continue break self.grid.set(*pos, obj) if obj is not None: obj.init_pos = pos obj.cur_pos = pos return pos def put_obj(self, obj, i, j): """ Put an object at a specific position in the grid """ self.grid.set(i, j, obj) obj.init_pos = (i, j) obj.cur_pos = (i, j) def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf): """ Set the agent's starting point at an empty position in the grid """ self.agent_pos = None pos = self.place_obj(None, top, size, max_tries=max_tries) self.agent_pos = pos if rand_dir: self.agent_dir = self._rand_int(0, 4) return pos @property def dir_vec(self): """ Get the direction vector for the agent, pointing in the direction of forward movement. """ assert self.agent_dir >= 0 and self.agent_dir < 4 return DIR_TO_VEC[self.agent_dir] @property def right_vec(self): """ Get the vector pointing to the right of the agent. """ dx, dy = self.dir_vec return np.array((-dy, dx)) @property def front_pos(self): """ Get the position of the cell that is right in front of the agent """ return self.agent_pos + self.dir_vec def get_view_coords(self, i, j): """ Translate and rotate absolute grid coordinates (i, j) into the agent's partially observable view (sub-grid). Note that the resulting coordinates may be negative or outside of the agent's view size. """ ax, ay = self.agent_pos dx, dy = self.dir_vec rx, ry = self.right_vec # Compute the absolute coordinates of the top-left view corner sz = self.agent_view_size hs = self.agent_view_size // 2 tx = ax + (dx * (sz - 1)) - (rx * hs) ty = ay + (dy * (sz - 1)) - (ry * hs) lx = i - tx ly = j - ty # Project the coordinates of the object relative to the top-left # corner onto the agent's own coordinate system vx = rx * lx + ry * ly vy = -(dx * lx + dy * ly) return vx, vy def get_view_exts(self, agent_view_size=None): """ Get the extents of the square set of tiles visible to the agent Note: the bottom extent indices are not included in the set if agent_view_size is None, use self.agent_view_size """ agent_view_size = agent_view_size or self.agent_view_size # Facing right if self.agent_dir == 0: topX = self.agent_pos[0] topY = self.agent_pos[1] - agent_view_size // 2 # Facing down elif self.agent_dir == 1: topX = self.agent_pos[0] - agent_view_size // 2 topY = self.agent_pos[1] # Facing left elif self.agent_dir == 2: topX = self.agent_pos[0] - agent_view_size + 1 topY = self.agent_pos[1] - agent_view_size // 2 # Facing up elif self.agent_dir == 3: topX = self.agent_pos[0] - agent_view_size // 2 topY = self.agent_pos[1] - agent_view_size + 1 else: assert False, "invalid agent direction" botX = topX + agent_view_size botY = topY + agent_view_size return (topX, topY, botX, botY) def relative_coords(self, x, y): """ Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates """ vx, vy = self.get_view_coords(x, y) if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size: return None return vx, vy def in_view(self, x, y): """ check if a grid position is visible to the agent """ return self.relative_coords(x, y) is not None def agent_sees(self, x, y): """ Check if a non-empty grid position is visible to the agent """ coordinates = self.relative_coords(x, y) if coordinates is None: return False vx, vy = coordinates obs = self.gen_obs() obs_grid, _ = Grid.decode(obs["image"]) obs_cell = obs_grid.get(vx, vy) world_cell = self.grid.get(x, y) return obs_cell is not None and obs_cell.type == world_cell.type def step(self, action): self.step_count += 1 reward = 0 done = False # Get the position in front of the agent fwd_pos = self.front_pos # Get the contents of the cell in front of the agent fwd_cell = self.grid.get(*fwd_pos) # Rotate left if action == self.actions.left: self.agent_dir -= 1 if self.agent_dir < 0: self.agent_dir += 4 # Rotate right elif action == self.actions.right: self.agent_dir = (self.agent_dir + 1) % 4 # Move forward elif action == self.actions.forward: if fwd_cell is None or fwd_cell.can_overlap(): self.agent_pos = fwd_pos if fwd_cell is not None and fwd_cell.type == "goal": done = True reward = self._reward() if fwd_cell is not None and fwd_cell.type == "lava": done = True # Pick up an object elif action == self.actions.pickup: if fwd_cell and fwd_cell.can_pickup(): if self.carrying is None: self.carrying = fwd_cell self.carrying.cur_pos = np.array([-1, -1]) self.grid.set(*fwd_pos, None) # Drop an object elif action == self.actions.drop: if not fwd_cell and self.carrying: self.grid.set(*fwd_pos, self.carrying) self.carrying.cur_pos = fwd_pos self.carrying = None # Toggle/activate an object elif action == self.actions.toggle: if fwd_cell: fwd_cell.toggle(self, fwd_pos) # Done action (not used by default) elif action == self.actions.done: pass else: assert False, "unknown action" if self.step_count >= self.max_steps: done = True obs = self.gen_obs() return obs, reward, done, {} def gen_obs_grid(self, agent_view_size=None): """ Generate the sub-grid observed by the agent. This method also outputs a visibility mask telling us which grid cells the agent can actually see. if agent_view_size is None, self.agent_view_size is used """ topX, topY, botX, botY = self.get_view_exts(agent_view_size) agent_view_size = agent_view_size or self.agent_view_size grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size) for i in range(self.agent_dir + 1): grid = grid.rotate_left() # Process occluders and visibility # Note that this incurs some performance cost if not self.see_through_walls: vis_mask = grid.process_vis( agent_pos=(agent_view_size // 2, agent_view_size - 1) ) else: vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool) # Make it so the agent sees what it's carrying # We do this by placing the carried object at the agent's position # in the agent's partially observable view agent_pos = grid.width // 2, grid.height - 1 if self.carrying: grid.set(*agent_pos, self.carrying) else: grid.set(*agent_pos, None) return grid, vis_mask def gen_obs(self): """ Generate the agent's view (partially observable, low-resolution encoding) """ grid, vis_mask = self.gen_obs_grid() # Encode the partially observable view into a numpy array image = grid.encode(vis_mask) assert hasattr( self, "mission" ), "environments must define a textual mission string" # Observations are dictionaries containing: # - an image (partially observable view of the environment) # - the agent's direction/orientation (acting as a compass) # - a textual mission string (instructions for the agent) obs = {"image": image, "direction": self.agent_dir, "mission": self.mission} return obs def get_obs_render(self, obs, tile_size=TILE_PIXELS // 2): """ Render an agent observation for visualization """ grid, vis_mask = Grid.decode(obs) # Render the whole grid img = grid.render( tile_size, agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1), agent_dir=3, highlight_mask=vis_mask, ) return img def render(self, mode="human", highlight=True, tile_size=TILE_PIXELS): assert mode in self.metadata["render_modes"] """ Render the whole-grid human view """ if mode == "human" and not self.window: self.window = Window("gym_minigrid") self.window.show(block=False) # Compute which cells are visible to the agent _, vis_mask = self.gen_obs_grid() # Compute the world coordinates of the bottom-left corner # of the agent's view area f_vec = self.dir_vec r_vec = self.right_vec top_left = ( self.agent_pos + f_vec * (self.agent_view_size - 1) - r_vec * (self.agent_view_size // 2) ) # Mask of which cells to highlight highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool) # For each cell in the visibility mask for vis_j in range(0, self.agent_view_size): for vis_i in range(0, self.agent_view_size): # If this cell is not visible, don't highlight it if not vis_mask[vis_i, vis_j]: continue # Compute the world coordinates of this cell abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i) if abs_i < 0 or abs_i >= self.width: continue if abs_j < 0 or abs_j >= self.height: continue # Mark this cell to be highlighted highlight_mask[abs_i, abs_j] = True # Render the whole grid img = self.grid.render( tile_size, self.agent_pos, self.agent_dir, highlight_mask=highlight_mask if highlight else None, ) if mode == "human": self.window.set_caption(self.mission) self.window.show_img(img) else: return img def close(self): if self.window: self.window.close()