import hashlib import math import string from enum import IntEnum import gym import numpy as np from gym import spaces # Size in pixels of a tile in the full-scale human view from gym_minigrid.rendering import ( downsample, fill_coords, highlight_img, point_in_circle, point_in_line, point_in_rect, point_in_triangle, rotate_fn, ) from gym_minigrid.window import Window TILE_PIXELS = 32 # Map of color names to RGB values COLORS = { "red": np.array([255, 0, 0]), "green": np.array([0, 255, 0]), "blue": np.array([0, 0, 255]), "purple": np.array([112, 39, 195]), "yellow": np.array([255, 255, 0]), "grey": np.array([100, 100, 100]), } COLOR_NAMES = sorted(list(COLORS.keys())) # Used to map colors to integers COLOR_TO_IDX = {"red": 0, "green": 1, "blue": 2, "purple": 3, "yellow": 4, "grey": 5} IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys())) # Map of object type to integers OBJECT_TO_IDX = { "unseen": 0, "empty": 1, "wall": 2, "floor": 3, "door": 4, "key": 5, "ball": 6, "box": 7, "goal": 8, "lava": 9, "agent": 10, } IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys())) # Map of state names to integers STATE_TO_IDX = { "open": 0, "closed": 1, "locked": 2, } # Map of agent direction indices to vectors DIR_TO_VEC = [ # Pointing right (positive X) np.array((1, 0)), # Down (positive Y) np.array((0, 1)), # Pointing left (negative X) np.array((-1, 0)), # Up (negative Y) np.array((0, -1)), ] class WorldObj: """ Base class for grid world objects """ def __init__(self, type, color): assert type in OBJECT_TO_IDX, type assert color in COLOR_TO_IDX, color self.type = type self.color = color self.contains = None # Initial position of the object self.init_pos = None # Current position of the object self.cur_pos = None def can_overlap(self): """Can the agent overlap with this?""" return False def can_pickup(self): """Can the agent pick this up?""" return False def can_contain(self): """Can this contain another object?""" return False def see_behind(self): """Can the agent see behind this object?""" return True def toggle(self, env, pos): """Method to trigger/toggle an action this object performs""" return False def encode(self): """Encode the a description of this object as a 3-tuple of integers""" return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], 0) @staticmethod def decode(type_idx, color_idx, state): """Create an object from a 3-tuple state description""" obj_type = IDX_TO_OBJECT[type_idx] color = IDX_TO_COLOR[color_idx] if obj_type == "empty" or obj_type == "unseen": return None # State, 0: open, 1: closed, 2: locked is_open = state == 0 is_locked = state == 2 if obj_type == "wall": v = Wall(color) elif obj_type == "floor": v = Floor(color) elif obj_type == "ball": v = Ball(color) elif obj_type == "key": v = Key(color) elif obj_type == "box": v = Box(color) elif obj_type == "door": v = Door(color, is_open, is_locked) elif obj_type == "goal": v = Goal() elif obj_type == "lava": v = Lava() else: assert False, "unknown object type in decode '%s'" % obj_type return v def render(self, r): """Draw this object with the given renderer""" raise NotImplementedError class Goal(WorldObj): def __init__(self): super().__init__("goal", "green") def can_overlap(self): return True def render(self, img): fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color]) class Floor(WorldObj): """ Colored floor tile the agent can walk over """ def __init__(self, color="blue"): super().__init__("floor", color) def can_overlap(self): return True def render(self, img): # Give the floor a pale color color = COLORS[self.color] / 2 fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color) class Lava(WorldObj): def __init__(self): super().__init__("lava", "red") def can_overlap(self): return True def render(self, img): c = (255, 128, 0) # Background color fill_coords(img, point_in_rect(0, 1, 0, 1), c) # Little waves for i in range(3): ylo = 0.3 + 0.2 * i yhi = 0.4 + 0.2 * i fill_coords(img, point_in_line(0.1, ylo, 0.3, yhi, r=0.03), (0, 0, 0)) fill_coords(img, point_in_line(0.3, yhi, 0.5, ylo, r=0.03), (0, 0, 0)) fill_coords(img, point_in_line(0.5, ylo, 0.7, yhi, r=0.03), (0, 0, 0)) fill_coords(img, point_in_line(0.7, yhi, 0.9, ylo, r=0.03), (0, 0, 0)) class Wall(WorldObj): def __init__(self, color="grey"): super().__init__("wall", color) def see_behind(self): return False def render(self, img): fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color]) class Door(WorldObj): def __init__(self, color, is_open=False, is_locked=False): super().__init__("door", color) self.is_open = is_open self.is_locked = is_locked def can_overlap(self): """The agent can only walk over this cell when the door is open""" return self.is_open def see_behind(self): return self.is_open def toggle(self, env, pos): # If the player has the right key to open the door if self.is_locked: if isinstance(env.carrying, Key) and env.carrying.color == self.color: self.is_locked = False self.is_open = True return True return False self.is_open = not self.is_open return True def encode(self): """Encode the a description of this object as a 3-tuple of integers""" # State, 0: open, 1: closed, 2: locked if self.is_open: state = 0 elif self.is_locked: state = 2 # if door is closed and unlocked elif not self.is_open: state = 1 else: raise ValueError( "There is no possible state encoding for the state:\n -Door Open: {}\n -Door Closed: {}\n -Door Locked: {}".format( self.is_open, not self.is_open, self.is_locked ) ) return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state) def render(self, img): c = COLORS[self.color] if self.is_open: fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c) fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0, 0, 0)) return # Door frame and door if self.is_locked: fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c) fill_coords(img, point_in_rect(0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c)) # Draw key slot fill_coords(img, point_in_rect(0.52, 0.75, 0.50, 0.56), c) else: fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c) fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0, 0, 0)) fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c) fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0, 0, 0)) # Draw door handle fill_coords(img, point_in_circle(cx=0.75, cy=0.50, r=0.08), c) class Key(WorldObj): def __init__(self, color="blue"): super().__init__("key", color) def can_pickup(self): return True def render(self, img): c = COLORS[self.color] # Vertical quad fill_coords(img, point_in_rect(0.50, 0.63, 0.31, 0.88), c) # Teeth fill_coords(img, point_in_rect(0.38, 0.50, 0.59, 0.66), c) fill_coords(img, point_in_rect(0.38, 0.50, 0.81, 0.88), c) # Ring fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.190), c) fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.064), (0, 0, 0)) class Ball(WorldObj): def __init__(self, color="blue"): super().__init__("ball", color) def can_pickup(self): return True def render(self, img): fill_coords(img, point_in_circle(0.5, 0.5, 0.31), COLORS[self.color]) class Box(WorldObj): def __init__(self, color, contains=None): super().__init__("box", color) self.contains = contains def can_pickup(self): return True def render(self, img): c = COLORS[self.color] # Outline fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c) fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0, 0, 0)) # Horizontal slit fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c) def toggle(self, env, pos): # Replace the box by its contents env.grid.set(*pos, self.contains) return True class Grid: """ Represent a grid and operations on it """ # Static cache of pre-renderer tiles tile_cache = {} def __init__(self, width, height): assert width >= 3 assert height >= 3 self.width = width self.height = height self.grid = [None] * width * height def __contains__(self, key): if isinstance(key, WorldObj): for e in self.grid: if e is key: return True elif isinstance(key, tuple): for e in self.grid: if e is None: continue if (e.color, e.type) == key: return True if key[0] is None and key[1] == e.type: return True return False def __eq__(self, other): grid1 = self.encode() grid2 = other.encode() return np.array_equal(grid2, grid1) def __ne__(self, other): return not self == other def copy(self): from copy import deepcopy return deepcopy(self) def set(self, i, j, v): assert i >= 0 and i < self.width assert j >= 0 and j < self.height self.grid[j * self.width + i] = v def get(self, i, j): assert i >= 0 and i < self.width assert j >= 0 and j < self.height return self.grid[j * self.width + i] def horz_wall(self, x, y, length=None, obj_type=Wall): if length is None: length = self.width - x for i in range(0, length): self.set(x + i, y, obj_type()) def vert_wall(self, x, y, length=None, obj_type=Wall): if length is None: length = self.height - y for j in range(0, length): self.set(x, y + j, obj_type()) def wall_rect(self, x, y, w, h): self.horz_wall(x, y, w) self.horz_wall(x, y + h - 1, w) self.vert_wall(x, y, h) self.vert_wall(x + w - 1, y, h) def rotate_left(self): """ Rotate the grid to the left (counter-clockwise) """ grid = Grid(self.height, self.width) for i in range(self.width): for j in range(self.height): v = self.get(i, j) grid.set(j, grid.height - 1 - i, v) return grid def slice(self, topX, topY, width, height): """ Get a subset of the grid """ grid = Grid(width, height) for j in range(0, height): for i in range(0, width): x = topX + i y = topY + j if x >= 0 and x < self.width and y >= 0 and y < self.height: v = self.get(x, y) else: v = Wall() grid.set(i, j, v) return grid @classmethod def render_tile( cls, obj, agent_dir=None, highlight=False, tile_size=TILE_PIXELS, subdivs=3 ): """ Render a tile and cache the result """ # Hash map lookup key for the cache key = (agent_dir, highlight, tile_size) key = obj.encode() + key if obj else key if key in cls.tile_cache: return cls.tile_cache[key] img = np.zeros( shape=(tile_size * subdivs, tile_size * subdivs, 3), dtype=np.uint8 ) # Draw the grid lines (top and left edges) fill_coords(img, point_in_rect(0, 0.031, 0, 1), (100, 100, 100)) fill_coords(img, point_in_rect(0, 1, 0, 0.031), (100, 100, 100)) if obj is not None: obj.render(img) # Overlay the agent on top if agent_dir is not None: tri_fn = point_in_triangle( (0.12, 0.19), (0.87, 0.50), (0.12, 0.81), ) # Rotate the agent based on its direction tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5, theta=0.5 * math.pi * agent_dir) fill_coords(img, tri_fn, (255, 0, 0)) # Highlight the cell if needed if highlight: highlight_img(img) # Downsample the image to perform supersampling/anti-aliasing img = downsample(img, subdivs) # Cache the rendered tile cls.tile_cache[key] = img return img def render(self, tile_size, agent_pos=None, agent_dir=None, highlight_mask=None): """ Render this grid at a given scale :param r: target renderer object :param tile_size: tile size in pixels """ if highlight_mask is None: highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool) # Compute the total grid size width_px = self.width * tile_size height_px = self.height * tile_size img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8) # Render the grid for j in range(0, self.height): for i in range(0, self.width): cell = self.get(i, j) agent_here = np.array_equal(agent_pos, (i, j)) tile_img = Grid.render_tile( cell, agent_dir=agent_dir if agent_here else None, highlight=highlight_mask[i, j], tile_size=tile_size, ) ymin = j * tile_size ymax = (j + 1) * tile_size xmin = i * tile_size xmax = (i + 1) * tile_size img[ymin:ymax, xmin:xmax, :] = tile_img return img def encode(self, vis_mask=None): """ Produce a compact numpy encoding of the grid """ if vis_mask is None: vis_mask = np.ones((self.width, self.height), dtype=bool) array = np.zeros((self.width, self.height, 3), dtype="uint8") for i in range(self.width): for j in range(self.height): if vis_mask[i, j]: v = self.get(i, j) if v is None: array[i, j, 0] = OBJECT_TO_IDX["empty"] array[i, j, 1] = 0 array[i, j, 2] = 0 else: array[i, j, :] = v.encode() return array @staticmethod def decode(array): """ Decode an array grid encoding back into a grid """ width, height, channels = array.shape assert channels == 3 vis_mask = np.ones(shape=(width, height), dtype=bool) grid = Grid(width, height) for i in range(width): for j in range(height): type_idx, color_idx, state = array[i, j] v = WorldObj.decode(type_idx, color_idx, state) grid.set(i, j, v) vis_mask[i, j] = type_idx != OBJECT_TO_IDX["unseen"] return grid, vis_mask def process_vis(self, agent_pos): mask = np.zeros(shape=(self.width, self.height), dtype=bool) mask[agent_pos[0], agent_pos[1]] = True for j in reversed(range(0, self.height)): for i in range(0, self.width - 1): if not mask[i, j]: continue cell = self.get(i, j) if cell and not cell.see_behind(): continue mask[i + 1, j] = True if j > 0: mask[i + 1, j - 1] = True mask[i, j - 1] = True for i in reversed(range(1, self.width)): if not mask[i, j]: continue cell = self.get(i, j) if cell and not cell.see_behind(): continue mask[i - 1, j] = True if j > 0: mask[i - 1, j - 1] = True mask[i, j - 1] = True for j in range(0, self.height): for i in range(0, self.width): if not mask[i, j]: self.set(i, j, None) return mask class MiniGridEnv(gym.Env): """ 2D grid world game environment """ metadata = { # Deprecated: use 'render_modes' instead "render.modes": ["human", "rgb_array"], "video.frames_per_second": 10, # Deprecated: use 'render_fps' instead "render_modes": ["human", "rgb_array"], "render_fps": 10, } # Enumeration of possible actions class Actions(IntEnum): # Turn left, turn right, move forward left = 0 right = 1 forward = 2 # Pick up an object pickup = 3 # Drop an object drop = 4 # Toggle/activate an object toggle = 5 # Done completing task done = 6 def __init__( self, grid_size: int = None, width: int = None, height: int = None, max_steps: int = 100, see_through_walls: bool = False, agent_view_size: int = 7, render_mode: str = None, **kwargs ): # Can't set both grid_size and width/height if grid_size: assert width is None and height is None width = grid_size height = grid_size # Action enumeration for this environment self.actions = MiniGridEnv.Actions # Actions are discrete integer values self.action_space = spaces.Discrete(len(self.actions)) # Number of cells (width and height) in the agent view assert agent_view_size % 2 == 1 assert agent_view_size >= 3 self.agent_view_size = agent_view_size # Observations are dictionaries containing an # encoding of the grid and a textual 'mission' string self.observation_space = spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, 3), dtype="uint8", ) self.observation_space = spaces.Dict( { "image": self.observation_space, "direction": spaces.Discrete(4), "mission": spaces.Text( max_length=200, charset=string.ascii_letters + string.digits + " .,!-", ), } ) # render mode self.render_mode = render_mode # Range of possible rewards self.reward_range = (0, 1) self.window: Window = None # Environment configuration self.width = width self.height = height self.max_steps = max_steps self.see_through_walls = see_through_walls # Current position and direction of the agent self.agent_pos: np.ndarray = None self.agent_dir: int = None # Initialize the state self.reset() def reset(self, *, seed=None, return_info=False, options=None): super().reset(seed=seed) # Current position and direction of the agent self.agent_pos = None self.agent_dir = None # Generate a new random grid at the start of each episode self._gen_grid(self.width, self.height) # These fields should be defined by _gen_grid assert self.agent_pos is not None assert self.agent_dir is not None # Check that the agent doesn't overlap with an object start_cell = self.grid.get(*self.agent_pos) assert start_cell is None or start_cell.can_overlap() # Item picked up, being carried, initially nothing self.carrying = None # Step count since episode start self.step_count = 0 # Return first observation obs = self.gen_obs() return obs def hash(self, size=16): """Compute a hash that uniquely identifies the current state of the environment. :param size: Size of the hashing """ sample_hash = hashlib.sha256() to_encode = [self.grid.encode().tolist(), self.agent_pos, self.agent_dir] for item in to_encode: sample_hash.update(str(item).encode("utf8")) return sample_hash.hexdigest()[:size] @property def steps_remaining(self): return self.max_steps - self.step_count def __str__(self): """ Produce a pretty string of the environment's grid along with the agent. A grid cell is represented by 2-character string, the first one for the object and the second one for the color. """ # Map of object types to short string OBJECT_TO_STR = { "wall": "W", "floor": "F", "door": "D", "key": "K", "ball": "A", "box": "B", "goal": "G", "lava": "V", } # Map agent's direction to short string AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"} str = "" for j in range(self.grid.height): for i in range(self.grid.width): if i == self.agent_pos[0] and j == self.agent_pos[1]: str += 2 * AGENT_DIR_TO_STR[self.agent_dir] continue c = self.grid.get(i, j) if c is None: str += " " continue if c.type == "door": if c.is_open: str += "__" elif c.is_locked: str += "L" + c.color[0].upper() else: str += "D" + c.color[0].upper() continue str += OBJECT_TO_STR[c.type] + c.color[0].upper() if j < self.grid.height - 1: str += "\n" return str def _gen_grid(self, width, height): assert False, "_gen_grid needs to be implemented by each environment" def _reward(self): """ Compute the reward to be given upon success """ return 1 - 0.9 * (self.step_count / self.max_steps) def _rand_int(self, low, high): """ Generate random integer in [low,high[ """ return self.np_random.integers(low, high) def _rand_float(self, low, high): """ Generate random float in [low,high[ """ return self.np_random.uniform(low, high) def _rand_bool(self): """ Generate random boolean value """ return self.np_random.integers(0, 2) == 0 def _rand_elem(self, iterable): """ Pick a random element in a list """ lst = list(iterable) idx = self._rand_int(0, len(lst)) return lst[idx] def _rand_subset(self, iterable, num_elems): """ Sample a random subset of distinct elements of a list """ lst = list(iterable) assert num_elems <= len(lst) out = [] while len(out) < num_elems: elem = self._rand_elem(lst) lst.remove(elem) out.append(elem) return out def _rand_color(self): """ Generate a random color name (string) """ return self._rand_elem(COLOR_NAMES) def _rand_pos(self, xLow, xHigh, yLow, yHigh): """ Generate a random (x,y) position tuple """ return ( self.np_random.integers(xLow, xHigh), self.np_random.integers(yLow, yHigh), ) def place_obj(self, obj, top=None, size=None, reject_fn=None, max_tries=math.inf): """ Place an object at an empty position in the grid :param top: top-left position of the rectangle where to place :param size: size of the rectangle where to place :param reject_fn: function to filter out potential positions """ if top is None: top = (0, 0) else: top = (max(top[0], 0), max(top[1], 0)) if size is None: size = (self.grid.width, self.grid.height) num_tries = 0 while True: # This is to handle with rare cases where rejection sampling # gets stuck in an infinite loop if num_tries > max_tries: raise RecursionError("rejection sampling failed in place_obj") num_tries += 1 pos = np.array( ( self._rand_int(top[0], min(top[0] + size[0], self.grid.width)), self._rand_int(top[1], min(top[1] + size[1], self.grid.height)), ) ) # Don't place the object on top of another object if self.grid.get(*pos) is not None: continue # Don't place the object where the agent is if np.array_equal(pos, self.agent_pos): continue # Check if there is a filtering criterion if reject_fn and reject_fn(self, pos): continue break self.grid.set(*pos, obj) if obj is not None: obj.init_pos = pos obj.cur_pos = pos return pos def put_obj(self, obj, i, j): """ Put an object at a specific position in the grid """ self.grid.set(i, j, obj) obj.init_pos = (i, j) obj.cur_pos = (i, j) def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf): """ Set the agent's starting point at an empty position in the grid """ self.agent_pos = None pos = self.place_obj(None, top, size, max_tries=max_tries) self.agent_pos = pos if rand_dir: self.agent_dir = self._rand_int(0, 4) return pos @property def dir_vec(self): """ Get the direction vector for the agent, pointing in the direction of forward movement. """ assert self.agent_dir >= 0 and self.agent_dir < 4 return DIR_TO_VEC[self.agent_dir] @property def right_vec(self): """ Get the vector pointing to the right of the agent. """ dx, dy = self.dir_vec return np.array((-dy, dx)) @property def front_pos(self): """ Get the position of the cell that is right in front of the agent """ return self.agent_pos + self.dir_vec def get_view_coords(self, i, j): """ Translate and rotate absolute grid coordinates (i, j) into the agent's partially observable view (sub-grid). Note that the resulting coordinates may be negative or outside of the agent's view size. """ ax, ay = self.agent_pos dx, dy = self.dir_vec rx, ry = self.right_vec # Compute the absolute coordinates of the top-left view corner sz = self.agent_view_size hs = self.agent_view_size // 2 tx = ax + (dx * (sz - 1)) - (rx * hs) ty = ay + (dy * (sz - 1)) - (ry * hs) lx = i - tx ly = j - ty # Project the coordinates of the object relative to the top-left # corner onto the agent's own coordinate system vx = rx * lx + ry * ly vy = -(dx * lx + dy * ly) return vx, vy def get_view_exts(self, agent_view_size=None): """ Get the extents of the square set of tiles visible to the agent Note: the bottom extent indices are not included in the set if agent_view_size is None, use self.agent_view_size """ agent_view_size = agent_view_size or self.agent_view_size # Facing right if self.agent_dir == 0: topX = self.agent_pos[0] topY = self.agent_pos[1] - agent_view_size // 2 # Facing down elif self.agent_dir == 1: topX = self.agent_pos[0] - agent_view_size // 2 topY = self.agent_pos[1] # Facing left elif self.agent_dir == 2: topX = self.agent_pos[0] - agent_view_size + 1 topY = self.agent_pos[1] - agent_view_size // 2 # Facing up elif self.agent_dir == 3: topX = self.agent_pos[0] - agent_view_size // 2 topY = self.agent_pos[1] - agent_view_size + 1 else: assert False, "invalid agent direction" botX = topX + agent_view_size botY = topY + agent_view_size return (topX, topY, botX, botY) def relative_coords(self, x, y): """ Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates """ vx, vy = self.get_view_coords(x, y) if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size: return None return vx, vy def in_view(self, x, y): """ check if a grid position is visible to the agent """ return self.relative_coords(x, y) is not None def agent_sees(self, x, y): """ Check if a non-empty grid position is visible to the agent """ coordinates = self.relative_coords(x, y) if coordinates is None: return False vx, vy = coordinates obs = self.gen_obs() obs_grid, _ = Grid.decode(obs["image"]) obs_cell = obs_grid.get(vx, vy) world_cell = self.grid.get(x, y) return obs_cell is not None and obs_cell.type == world_cell.type def step(self, action): self.step_count += 1 reward = 0 done = False # Get the position in front of the agent fwd_pos = self.front_pos # Get the contents of the cell in front of the agent fwd_cell = self.grid.get(*fwd_pos) # Rotate left if action == self.actions.left: self.agent_dir -= 1 if self.agent_dir < 0: self.agent_dir += 4 # Rotate right elif action == self.actions.right: self.agent_dir = (self.agent_dir + 1) % 4 # Move forward elif action == self.actions.forward: if fwd_cell is None or fwd_cell.can_overlap(): self.agent_pos = fwd_pos if fwd_cell is not None and fwd_cell.type == "goal": done = True reward = self._reward() if fwd_cell is not None and fwd_cell.type == "lava": done = True # Pick up an object elif action == self.actions.pickup: if fwd_cell and fwd_cell.can_pickup(): if self.carrying is None: self.carrying = fwd_cell self.carrying.cur_pos = np.array([-1, -1]) self.grid.set(*fwd_pos, None) # Drop an object elif action == self.actions.drop: if not fwd_cell and self.carrying: self.grid.set(*fwd_pos, self.carrying) self.carrying.cur_pos = fwd_pos self.carrying = None # Toggle/activate an object elif action == self.actions.toggle: if fwd_cell: fwd_cell.toggle(self, fwd_pos) # Done action (not used by default) elif action == self.actions.done: pass else: assert False, "unknown action" if self.step_count >= self.max_steps: done = True obs = self.gen_obs() return obs, reward, done, {} def gen_obs_grid(self, agent_view_size=None): """ Generate the sub-grid observed by the agent. This method also outputs a visibility mask telling us which grid cells the agent can actually see. if agent_view_size is None, self.agent_view_size is used """ topX, topY, botX, botY = self.get_view_exts(agent_view_size) agent_view_size = agent_view_size or self.agent_view_size grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size) for i in range(self.agent_dir + 1): grid = grid.rotate_left() # Process occluders and visibility # Note that this incurs some performance cost if not self.see_through_walls: vis_mask = grid.process_vis( agent_pos=(agent_view_size // 2, agent_view_size - 1) ) else: vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool) # Make it so the agent sees what it's carrying # We do this by placing the carried object at the agent's position # in the agent's partially observable view agent_pos = grid.width // 2, grid.height - 1 if self.carrying: grid.set(*agent_pos, self.carrying) else: grid.set(*agent_pos, None) return grid, vis_mask def gen_obs(self): """ Generate the agent's view (partially observable, low-resolution encoding) """ grid, vis_mask = self.gen_obs_grid() # Encode the partially observable view into a numpy array image = grid.encode(vis_mask) assert hasattr( self, "mission" ), "environments must define a textual mission string" # Observations are dictionaries containing: # - an image (partially observable view of the environment) # - the agent's direction/orientation (acting as a compass) # - a textual mission string (instructions for the agent) obs = {"image": image, "direction": self.agent_dir, "mission": self.mission} return obs def get_obs_render(self, obs, tile_size=TILE_PIXELS // 2): """ Render an agent observation for visualization """ grid, vis_mask = Grid.decode(obs) # Render the whole grid img = grid.render( tile_size, agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1), agent_dir=3, highlight_mask=vis_mask, ) return img def render(self, mode="human", close=False, highlight=True, tile_size=TILE_PIXELS): """ Render the whole-grid human view """ if self.render_mode is not None: mode = self.render_mode if close: if self.window: self.window.close() return if mode == "human" and not self.window: self.window = Window("gym_minigrid") self.window.show(block=False) # Compute which cells are visible to the agent _, vis_mask = self.gen_obs_grid() # Compute the world coordinates of the bottom-left corner # of the agent's view area f_vec = self.dir_vec r_vec = self.right_vec top_left = ( self.agent_pos + f_vec * (self.agent_view_size - 1) - r_vec * (self.agent_view_size // 2) ) # Mask of which cells to highlight highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool) # For each cell in the visibility mask for vis_j in range(0, self.agent_view_size): for vis_i in range(0, self.agent_view_size): # If this cell is not visible, don't highlight it if not vis_mask[vis_i, vis_j]: continue # Compute the world coordinates of this cell abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i) if abs_i < 0 or abs_i >= self.width: continue if abs_j < 0 or abs_j >= self.height: continue # Mark this cell to be highlighted highlight_mask[abs_i, abs_j] = True # Render the whole grid img = self.grid.render( tile_size, self.agent_pos, self.agent_dir, highlight_mask=highlight_mask if highlight else None, ) if mode == "human": self.window.set_caption(self.mission) self.window.show_img(img) return img def close(self): if self.window: self.window.close() return