from gym_minigrid.minigrid import COLOR_NAMES, Ball, Box, Grid, Key, MiniGridEnv class PutNearEnv(MiniGridEnv): """ Environment in which the agent is instructed to place an object near another object through a natural language string. """ def __init__(self, size=6, numObjs=2, **kwargs): self.numObjs = numObjs super().__init__( grid_size=size, max_steps=5 * size, # Set this to True for maximum speed see_through_walls=True, **kwargs ) def _gen_grid(self, width, height): self.grid = Grid(width, height) # Generate the surrounding walls self.grid.horz_wall(0, 0) self.grid.horz_wall(0, height - 1) self.grid.vert_wall(0, 0) self.grid.vert_wall(width - 1, 0) # Types and colors of objects we can generate types = ["key", "ball", "box"] objs = [] objPos = [] def near_obj(env, p1): for p2 in objPos: dx = p1[0] - p2[0] dy = p1[1] - p2[1] if abs(dx) <= 1 and abs(dy) <= 1: return True return False # Until we have generated all the objects while len(objs) < self.numObjs: objType = self._rand_elem(types) objColor = self._rand_elem(COLOR_NAMES) # If this object already exists, try again if (objType, objColor) in objs: continue if objType == "key": obj = Key(objColor) elif objType == "ball": obj = Ball(objColor) elif objType == "box": obj = Box(objColor) else: raise ValueError( "{} object type given. Object type can only be of values key, ball and box.".format( objType ) ) pos = self.place_obj(obj, reject_fn=near_obj) objs.append((objType, objColor)) objPos.append(pos) # Randomize the agent start position and orientation self.place_agent() # Choose a random object to be moved objIdx = self._rand_int(0, len(objs)) self.move_type, self.moveColor = objs[objIdx] self.move_pos = objPos[objIdx] # Choose a target object (to put the first object next to) while True: targetIdx = self._rand_int(0, len(objs)) if targetIdx != objIdx: break self.target_type, self.target_color = objs[targetIdx] self.target_pos = objPos[targetIdx] self.mission = "put the {} {} near the {} {}".format( self.moveColor, self.move_type, self.target_color, self.target_type, ) def step(self, action): preCarrying = self.carrying obs, reward, done, info = super().step(action) u, v = self.dir_vec ox, oy = (self.agent_pos[0] + u, self.agent_pos[1] + v) tx, ty = self.target_pos # If we picked up the wrong object, terminate the episode if action == self.actions.pickup and self.carrying: if ( self.carrying.type != self.move_type or self.carrying.color != self.moveColor ): done = True # If successfully dropping an object near the target if action == self.actions.drop and preCarrying: if self.grid.get(ox, oy) is preCarrying: if abs(ox - tx) <= 1 and abs(oy - ty) <= 1: reward = self._reward() done = True return obs, reward, done, info