123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- from __future__ import annotations
- import numpy as np
- from minigrid.core.grid import Grid
- from minigrid.core.mission import MissionSpace
- from minigrid.core.world_object import Goal, Lava
- from minigrid.minigrid_env import MiniGridEnv
- class LavaGapEnv(MiniGridEnv):
- """
- ## Description
- The agent has to reach the green goal square at the opposite corner of the
- room, and must pass through a narrow gap in a vertical strip of deadly lava.
- Touching the lava terminate the episode with a zero reward. This environment
- is useful for studying safety and safe exploration.
- ## Mission Space
- Depending on the `obstacle_type` parameter:
- - `Lava`: "avoid the lava and get to the green goal square"
- - otherwise: "find the opening and get to the green goal square"
- ## Action Space
- | Num | Name | Action |
- |-----|--------------|--------------|
- | 0 | left | Turn left |
- | 1 | right | Turn right |
- | 2 | forward | Move forward |
- | 3 | pickup | Unused |
- | 4 | drop | Unused |
- | 5 | toggle | Unused |
- | 6 | done | Unused |
- ## Observation Encoding
- - Each tile is encoded as a 3 dimensional tuple:
- `(OBJECT_IDX, COLOR_IDX, STATE)`
- - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
- [minigrid/core/constants.py](minigrid/core/constants.py)
- - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
- ## Rewards
- A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
- ## Termination
- The episode ends if any one of the following conditions is met:
- 1. The agent reaches the goal.
- 2. The agent falls into lava.
- 3. Timeout (see `max_steps`).
- ## Registered Configurations
- S: size of map SxS.
- - `MiniGrid-LavaGapS5-v0`
- - `MiniGrid-LavaGapS6-v0`
- - `MiniGrid-LavaGapS7-v0`
- """
- def __init__(
- self, size, obstacle_type=Lava, max_steps: int | None = None, **kwargs
- ):
- self.obstacle_type = obstacle_type
- self.size = size
- if obstacle_type == Lava:
- mission_space = MissionSpace(mission_func=self._gen_mission_lava)
- else:
- mission_space = MissionSpace(mission_func=self._gen_mission)
- if max_steps is None:
- max_steps = 4 * size**2
- super().__init__(
- mission_space=mission_space,
- width=size,
- height=size,
- # Set this to True for maximum speed
- see_through_walls=False,
- max_steps=max_steps,
- **kwargs,
- )
- @staticmethod
- def _gen_mission_lava():
- return "avoid the lava and get to the green goal square"
- @staticmethod
- def _gen_mission():
- return "find the opening and get to the green goal square"
- def _gen_grid(self, width, height):
- assert width >= 5 and height >= 5
- # Create an empty grid
- self.grid = Grid(width, height)
- # Generate the surrounding walls
- self.grid.wall_rect(0, 0, width, height)
- # Place the agent in the top-left corner
- self.agent_pos = np.array((1, 1))
- self.agent_dir = 0
- # Place a goal square in the bottom-right corner
- self.goal_pos = np.array((width - 2, height - 2))
- self.put_obj(Goal(), *self.goal_pos)
- # Generate and store random gap position
- self.gap_pos = np.array(
- (
- self._rand_int(2, width - 2),
- self._rand_int(1, height - 1),
- )
- )
- # Place the obstacle wall
- self.grid.vert_wall(self.gap_pos[0], 1, height - 2, self.obstacle_type)
- # Put a hole in the wall
- self.grid.set(*self.gap_pos, None)
- self.mission = (
- "avoid the lava and get to the green goal square"
- if self.obstacle_type == Lava
- else "find the opening and get to the green goal square"
- )
|