123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- from __future__ import annotations
- import numpy as np
- from minigrid.core.actions import Actions
- from minigrid.core.grid import Grid
- from minigrid.core.mission import MissionSpace
- from minigrid.core.world_object import Ball, Key, Wall
- from minigrid.minigrid_env import MiniGridEnv
- class MemoryEnv(MiniGridEnv):
- """
- ## Description
- This environment is a memory test. The agent starts in a small room where it
- sees an object. It then has to go through a narrow hallway which ends in a
- split. At each end of the split there is an object, one of which is the same
- as the object in the starting room. The agent has to remember the initial
- object, and go to the matching object at split.
- ## Mission Space
- "go to the matching object at the end of the hallway"
- ## Action Space
- | Num | Name | Action |
- |-----|--------------|---------------------------|
- | 0 | left | Turn left |
- | 1 | right | Turn right |
- | 2 | forward | Move forward |
- | 3 | pickup | Pick up an object |
- | 4 | drop | Unused |
- | 5 | toggle | Toggle/activate an object |
- | 6 | done | Unused |
- ## Observation Encoding
- - Each tile is encoded as a 3 dimensional tuple:
- `(OBJECT_IDX, COLOR_IDX, STATE)`
- - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
- [minigrid/core/constants.py](minigrid/core/constants.py)
- - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
- ## Rewards
- A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
- ## Termination
- The episode ends if any one of the following conditions is met:
- 1. The agent reaches the correct matching object.
- 2. The agent reaches the wrong matching object.
- 3. Timeout (see `max_steps`).
- ## Registered Configurations
- S: size of map SxS.
- - `MiniGrid-MemoryS17Random-v0`
- - `MiniGrid-MemoryS13Random-v0`
- - `MiniGrid-MemoryS13-v0`
- - `MiniGrid-MemoryS11-v0`
- """
- def __init__(
- self, size=8, random_length=False, max_steps: int | None = None, **kwargs
- ):
- self.size = size
- self.random_length = random_length
- if max_steps is None:
- max_steps = 5 * size**2
- mission_space = MissionSpace(mission_func=self._gen_mission)
- super().__init__(
- mission_space=mission_space,
- width=size,
- height=size,
- # Set this to True for maximum speed
- see_through_walls=False,
- max_steps=max_steps,
- **kwargs,
- )
- @staticmethod
- def _gen_mission():
- return "go to the matching object at the end of the hallway"
- def _gen_grid(self, width, height):
- self.grid = Grid(width, height)
- # Generate the surrounding walls
- self.grid.horz_wall(0, 0)
- self.grid.horz_wall(0, height - 1)
- self.grid.vert_wall(0, 0)
- self.grid.vert_wall(width - 1, 0)
- assert height % 2 == 1
- upper_room_wall = height // 2 - 2
- lower_room_wall = height // 2 + 2
- if self.random_length:
- hallway_end = self._rand_int(4, width - 2)
- else:
- hallway_end = width - 3
- # Start room
- for i in range(1, 5):
- self.grid.set(i, upper_room_wall, Wall())
- self.grid.set(i, lower_room_wall, Wall())
- self.grid.set(4, upper_room_wall + 1, Wall())
- self.grid.set(4, lower_room_wall - 1, Wall())
- # Horizontal hallway
- for i in range(5, hallway_end):
- self.grid.set(i, upper_room_wall + 1, Wall())
- self.grid.set(i, lower_room_wall - 1, Wall())
- # Vertical hallway
- for j in range(0, height):
- if j != height // 2:
- self.grid.set(hallway_end, j, Wall())
- self.grid.set(hallway_end + 2, j, Wall())
- # Fix the player's start position and orientation
- self.agent_pos = np.array((self._rand_int(1, hallway_end + 1), height // 2))
- self.agent_dir = 0
- # Place objects
- start_room_obj = self._rand_elem([Key, Ball])
- self.grid.set(1, height // 2 - 1, start_room_obj("green"))
- other_objs = self._rand_elem([[Ball, Key], [Key, Ball]])
- pos0 = (hallway_end + 1, height // 2 - 2)
- pos1 = (hallway_end + 1, height // 2 + 2)
- self.grid.set(*pos0, other_objs[0]("green"))
- self.grid.set(*pos1, other_objs[1]("green"))
- # Choose the target objects
- if start_room_obj == other_objs[0]:
- self.success_pos = (pos0[0], pos0[1] + 1)
- self.failure_pos = (pos1[0], pos1[1] - 1)
- else:
- self.success_pos = (pos1[0], pos1[1] - 1)
- self.failure_pos = (pos0[0], pos0[1] + 1)
- self.mission = "go to the matching object at the end of the hallway"
- def step(self, action):
- if action == Actions.pickup:
- action = Actions.toggle
- obs, reward, terminated, truncated, info = super().step(action)
- if tuple(self.agent_pos) == self.success_pos:
- reward = self._reward()
- terminated = True
- if tuple(self.agent_pos) == self.failure_pos:
- reward = 0
- terminated = True
- return obs, reward, terminated, truncated, info
|