123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- from __future__ import annotations
- import itertools as itt
- import numpy as np
- from minigrid.core.grid import Grid
- from minigrid.core.mission import MissionSpace
- from minigrid.core.world_object import Goal, Lava
- from minigrid.minigrid_env import MiniGridEnv
- class CrossingEnv(MiniGridEnv):
- """
- ## Description
- Depending on the `obstacle_type` parameter:
- - `Lava` - The agent has to reach the green goal square on the other corner
- of the room while avoiding rivers of deadly lava which terminate the
- episode in failure. Each lava stream runs across the room either
- horizontally or vertically, and has a single crossing point which can be
- safely used; Luckily, a path to the goal is guaranteed to exist. This
- environment is useful for studying safety and safe exploration.
- - otherwise - Similar to the `LavaCrossing` environment, the agent has to
- reach the green goal square on the other corner of the room, however
- lava is replaced by walls. This MDP is therefore much easier and maybe
- useful for quickly testing your algorithms.
- ## Mission Space
- Depending on the `obstacle_type` parameter:
- - `Lava` - "avoid the lava and get to the green goal square"
- - otherwise - "find the opening and get to the green goal square"
- ## Action Space
- | Num | Name | Action |
- |-----|--------------|--------------|
- | 0 | left | Turn left |
- | 1 | right | Turn right |
- | 2 | forward | Move forward |
- | 3 | pickup | Unused |
- | 4 | drop | Unused |
- | 5 | toggle | Unused |
- | 6 | done | Unused |
- ## Observation Encoding
- - Each tile is encoded as a 3 dimensional tuple:
- `(OBJECT_IDX, COLOR_IDX, STATE)`
- - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
- [minigrid/core/constants.py](minigrid/core/constants.py)
- - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
- ## Rewards
- A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
- ## Termination
- The episode ends if any one of the following conditions is met:
- 1. The agent reaches the goal.
- 2. The agent falls into lava.
- 3. Timeout (see `max_steps`).
- ## Registered Configurations
- S: size of the map SxS.
- N: number of valid crossings across lava or walls from the starting position
- to the goal
- - `Lava` :
- - `MiniGrid-LavaCrossingS9N1-v0`
- - `MiniGrid-LavaCrossingS9N2-v0`
- - `MiniGrid-LavaCrossingS9N3-v0`
- - `MiniGrid-LavaCrossingS11N5-v0`
- - otherwise :
- - `MiniGrid-SimpleCrossingS9N1-v0`
- - `MiniGrid-SimpleCrossingS9N2-v0`
- - `MiniGrid-SimpleCrossingS9N3-v0`
- - `MiniGrid-SimpleCrossingS11N5-v0`
- """
- def __init__(
- self,
- size=9,
- num_crossings=1,
- obstacle_type=Lava,
- max_steps: int | None = None,
- **kwargs,
- ):
- self.num_crossings = num_crossings
- self.obstacle_type = obstacle_type
- self.goal_position = None
- if obstacle_type == Lava:
- mission_space = MissionSpace(mission_func=self._gen_mission_lava)
- else:
- mission_space = MissionSpace(mission_func=self._gen_mission)
- if max_steps is None:
- max_steps = 4 * size**2
- super().__init__(
- mission_space=mission_space,
- grid_size=size,
- see_through_walls=False, # Set this to True for maximum speed
- max_steps=max_steps,
- **kwargs,
- )
- @staticmethod
- def _gen_mission_lava():
- return "avoid the lava and get to the green goal square"
- @staticmethod
- def _gen_mission():
- return "find the opening and get to the green goal square"
- def _gen_grid(self, width, height):
- assert width % 2 == 1 and height % 2 == 1 # odd size
- # Create an empty grid
- self.grid = Grid(width, height)
- # Generate the surrounding walls
- self.grid.wall_rect(0, 0, width, height)
- # Place the agent in the top-left corner
- self.agent_pos = np.array((1, 1))
- self.agent_dir = 0
- # Place a goal square in the bottom-right corner
- self.put_obj(Goal(), width - 2, height - 2)
- self.goal_position = (width - 2, height - 2)
- # Place obstacles (lava or walls)
- v, h = object(), object() # singleton `vertical` and `horizontal` objects
- # Lava rivers or walls specified by direction and position in grid
- rivers = [(v, i) for i in range(2, height - 2, 2)]
- rivers += [(h, j) for j in range(2, width - 2, 2)]
- self.np_random.shuffle(rivers)
- rivers = rivers[: self.num_crossings] # sample random rivers
- rivers_v = sorted(pos for direction, pos in rivers if direction is v)
- rivers_h = sorted(pos for direction, pos in rivers if direction is h)
- obstacle_pos = itt.chain(
- itt.product(range(1, width - 1), rivers_h),
- itt.product(rivers_v, range(1, height - 1)),
- )
- for i, j in obstacle_pos:
- self.put_obj(self.obstacle_type(), i, j)
- # Sample path to goal
- path = [h] * len(rivers_v) + [v] * len(rivers_h)
- self.np_random.shuffle(path)
- # Create openings
- limits_v = [0] + rivers_v + [height - 1]
- limits_h = [0] + rivers_h + [width - 1]
- room_i, room_j = 0, 0
- for direction in path:
- if direction is h:
- i = limits_v[room_i + 1]
- j = self.np_random.choice(
- range(limits_h[room_j] + 1, limits_h[room_j + 1])
- )
- room_i += 1
- elif direction is v:
- i = self.np_random.choice(
- range(limits_v[room_i] + 1, limits_v[room_i + 1])
- )
- j = limits_h[room_j + 1]
- room_j += 1
- else:
- assert False
- self.grid.set(i, j, None)
- self.mission = (
- "avoid the lava and get to the green goal square"
- if self.obstacle_type == Lava
- else "find the opening and get to the green goal square"
- )
|