123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- from __future__ import annotations
- from operator import add
- from gymnasium.spaces import Discrete
- from minigrid.core.grid import Grid
- from minigrid.core.mission import MissionSpace
- from minigrid.core.world_object import Ball, Goal
- from minigrid.minigrid_env import MiniGridEnv
- class DynamicObstaclesEnv(MiniGridEnv):
- """
- ## Description
- This environment is an empty room with moving obstacles.
- The goal of the agent is to reach the green goal square without colliding
- with any obstacle. A large penalty is subtracted if the agent collides with
- an obstacle and the episode finishes. This environment is useful to test
- Dynamic Obstacle Avoidance for mobile robots with Reinforcement Learning in
- Partial Observability.
- ## Mission Space
- "get to the green goal square"
- ## Action Space
- | Num | Name | Action |
- |-----|--------------|--------------|
- | 0 | left | Turn left |
- | 1 | right | Turn right |
- | 2 | forward | Move forward |
- | 3 | pickup | Unused |
- | 4 | drop | Unused |
- | 5 | toggle | Unused |
- | 6 | done | Unused |
- ## Observation Encoding
- - Each tile is encoded as a 3 dimensional tuple:
- `(OBJECT_IDX, COLOR_IDX, STATE)`
- - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
- [minigrid/core/constants.py](minigrid/core/constants.py)
- - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
- ## Rewards
- A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure. A '-1' penalty is
- subtracted if the agent collides with an obstacle.
- ## Termination
- The episode ends if any one of the following conditions is met:
- 1. The agent reaches the goal.
- 2. The agent collides with an obstacle.
- 3. Timeout (see `max_steps`).
- ## Registered Configurations
- - `MiniGrid-Dynamic-Obstacles-5x5-v0`
- - `MiniGrid-Dynamic-Obstacles-Random-5x5-v0`
- - `MiniGrid-Dynamic-Obstacles-6x6-v0`
- - `MiniGrid-Dynamic-Obstacles-Random-6x6-v0`
- - `MiniGrid-Dynamic-Obstacles-8x8-v0`
- - `MiniGrid-Dynamic-Obstacles-16x16-v0`
- """
- def __init__(
- self,
- size=8,
- agent_start_pos=(1, 1),
- agent_start_dir=0,
- n_obstacles=4,
- max_steps: int | None = None,
- **kwargs,
- ):
- self.agent_start_pos = agent_start_pos
- self.agent_start_dir = agent_start_dir
- # Reduce obstacles if there are too many
- if n_obstacles <= size / 2 + 1:
- self.n_obstacles = int(n_obstacles)
- else:
- self.n_obstacles = int(size / 2)
- mission_space = MissionSpace(mission_func=self._gen_mission)
- if max_steps is None:
- max_steps = 4 * size**2
- super().__init__(
- mission_space=mission_space,
- grid_size=size,
- # Set this to True for maximum speed
- see_through_walls=True,
- max_steps=max_steps,
- **kwargs,
- )
- # Allow only 3 actions permitted: left, right, forward
- self.action_space = Discrete(self.actions.forward + 1)
- self.reward_range = (-1, 1)
- @staticmethod
- def _gen_mission():
- return "get to the green goal square"
- def _gen_grid(self, width, height):
- # Create an empty grid
- self.grid = Grid(width, height)
- # Generate the surrounding walls
- self.grid.wall_rect(0, 0, width, height)
- # Place a goal square in the bottom-right corner
- self.grid.set(width - 2, height - 2, Goal())
- # Place the agent
- if self.agent_start_pos is not None:
- self.agent_pos = self.agent_start_pos
- self.agent_dir = self.agent_start_dir
- else:
- self.place_agent()
- # Place obstacles
- self.obstacles = []
- for i_obst in range(self.n_obstacles):
- self.obstacles.append(Ball())
- self.place_obj(self.obstacles[i_obst], max_tries=100)
- self.mission = "get to the green goal square"
- def step(self, action):
- # Invalid action
- if action >= self.action_space.n:
- action = 0
- # Check if there is an obstacle in front of the agent
- front_cell = self.grid.get(*self.front_pos)
- not_clear = front_cell and front_cell.type != "goal"
- # Update obstacle positions
- for i_obst in range(len(self.obstacles)):
- old_pos = self.obstacles[i_obst].cur_pos
- top = tuple(map(add, old_pos, (-1, -1)))
- try:
- self.place_obj(
- self.obstacles[i_obst], top=top, size=(3, 3), max_tries=100
- )
- self.grid.set(old_pos[0], old_pos[1], None)
- except Exception:
- pass
- # Update the agent's position/direction
- obs, reward, terminated, truncated, info = super().step(action)
- # If the agent tried to walk over an obstacle or wall
- if action == self.actions.forward and not_clear:
- reward = -1
- terminated = True
- return obs, reward, terminated, truncated, info
- return obs, reward, terminated, truncated, info
|