minigrid.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864
  1. import math
  2. import gym
  3. from enum import IntEnum
  4. import numpy as np
  5. from gym import error, spaces, utils
  6. from gym.utils import seeding
  7. from gym_minigrid.rendering import *
  8. # Size in pixels of a cell in the full-scale human view
  9. CELL_PIXELS = 32
  10. # Number of cells (width and height) in the agent view
  11. AGENT_VIEW_SIZE = 7
  12. # Size of the array given as an observation to the agent
  13. OBS_ARRAY_SIZE = (AGENT_VIEW_SIZE, AGENT_VIEW_SIZE, 3)
  14. # Map of color names to RGB values
  15. COLORS = {
  16. 'red' : (255, 0, 0),
  17. 'green' : (0, 255, 0),
  18. 'blue' : (0, 0, 255),
  19. 'purple': (112, 39, 195),
  20. 'yellow': (255, 255, 0),
  21. 'grey' : (100, 100, 100)
  22. }
  23. COLOR_NAMES = list(COLORS.keys())
  24. # Used to map colors to integers
  25. COLOR_TO_IDX = {
  26. 'red' : 0,
  27. 'green' : 1,
  28. 'blue' : 2,
  29. 'purple': 3,
  30. 'yellow': 4,
  31. 'grey' : 5
  32. }
  33. IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
  34. # Map of object type to integers
  35. OBJECT_TO_IDX = {
  36. 'empty' : 0,
  37. 'wall' : 1,
  38. 'door' : 2,
  39. 'locked_door' : 3,
  40. 'key' : 4,
  41. 'ball' : 5,
  42. 'box' : 6,
  43. 'goal' : 7
  44. }
  45. IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
  46. class WorldObj:
  47. """
  48. Base class for grid world objects
  49. """
  50. def __init__(self, type, color):
  51. assert type in OBJECT_TO_IDX, type
  52. assert color in COLOR_TO_IDX, color
  53. self.type = type
  54. self.color = color
  55. self.contains = None
  56. def canOverlap(self):
  57. """Can the agent overlap with this?"""
  58. return False
  59. def canPickup(self):
  60. """Can the agent pick this up?"""
  61. return False
  62. def canContain(self):
  63. """Can this contain another object?"""
  64. return False
  65. def toggle(self, env, pos):
  66. """Method to trigger/toggle an action this object performs"""
  67. return False
  68. def render(self, r):
  69. assert False
  70. def _setColor(self, r):
  71. c = COLORS[self.color]
  72. r.setLineColor(c[0], c[1], c[2])
  73. r.setColor(c[0], c[1], c[2])
  74. class Goal(WorldObj):
  75. def __init__(self):
  76. super(Goal, self).__init__('goal', 'green')
  77. def render(self, r):
  78. self._setColor(r)
  79. r.drawPolygon([
  80. (0 , CELL_PIXELS),
  81. (CELL_PIXELS, CELL_PIXELS),
  82. (CELL_PIXELS, 0),
  83. (0 , 0)
  84. ])
  85. class Wall(WorldObj):
  86. def __init__(self, color='grey'):
  87. super(Wall, self).__init__('wall', color)
  88. def render(self, r):
  89. self._setColor(r)
  90. r.drawPolygon([
  91. (0 , CELL_PIXELS),
  92. (CELL_PIXELS, CELL_PIXELS),
  93. (CELL_PIXELS, 0),
  94. (0 , 0)
  95. ])
  96. class Door(WorldObj):
  97. def __init__(self, color, isOpen=False):
  98. super(Door, self).__init__('door', color)
  99. self.isOpen = isOpen
  100. def render(self, r):
  101. c = COLORS[self.color]
  102. r.setLineColor(c[0], c[1], c[2])
  103. r.setColor(0, 0, 0)
  104. if self.isOpen:
  105. r.drawPolygon([
  106. (CELL_PIXELS-2, CELL_PIXELS),
  107. (CELL_PIXELS , CELL_PIXELS),
  108. (CELL_PIXELS , 0),
  109. (CELL_PIXELS-2, 0)
  110. ])
  111. return
  112. r.drawPolygon([
  113. (0 , CELL_PIXELS),
  114. (CELL_PIXELS, CELL_PIXELS),
  115. (CELL_PIXELS, 0),
  116. (0 , 0)
  117. ])
  118. r.drawPolygon([
  119. (2 , CELL_PIXELS-2),
  120. (CELL_PIXELS-2, CELL_PIXELS-2),
  121. (CELL_PIXELS-2, 2),
  122. (2 , 2)
  123. ])
  124. r.drawCircle(CELL_PIXELS * 0.75, CELL_PIXELS * 0.5, 2)
  125. def toggle(self, env, pos):
  126. if not self.isOpen:
  127. self.isOpen = True
  128. return True
  129. return False
  130. def canOverlap(self):
  131. """The agent can only walk over this cell when the door is open"""
  132. return self.isOpen
  133. class LockedDoor(WorldObj):
  134. def __init__(self, color, isOpen=False):
  135. super(LockedDoor, self).__init__('locked_door', color)
  136. self.isOpen = isOpen
  137. def render(self, r):
  138. c = COLORS[self.color]
  139. r.setLineColor(c[0], c[1], c[2])
  140. r.setColor(c[0], c[1], c[2], 50)
  141. if self.isOpen:
  142. r.drawPolygon([
  143. (CELL_PIXELS-2, CELL_PIXELS),
  144. (CELL_PIXELS , CELL_PIXELS),
  145. (CELL_PIXELS , 0),
  146. (CELL_PIXELS-2, 0)
  147. ])
  148. return
  149. r.drawPolygon([
  150. (0 , CELL_PIXELS),
  151. (CELL_PIXELS, CELL_PIXELS),
  152. (CELL_PIXELS, 0),
  153. (0 , 0)
  154. ])
  155. r.drawPolygon([
  156. (2 , CELL_PIXELS-2),
  157. (CELL_PIXELS-2, CELL_PIXELS-2),
  158. (CELL_PIXELS-2, 2),
  159. (2 , 2)
  160. ])
  161. r.drawLine(
  162. CELL_PIXELS * 0.55,
  163. CELL_PIXELS * 0.5,
  164. CELL_PIXELS * 0.75,
  165. CELL_PIXELS * 0.5
  166. )
  167. def toggle(self, env, pos):
  168. # If the player has the right key to open the door
  169. if isinstance(env.carrying, Key) and env.carrying.color == self.color:
  170. self.isOpen = True
  171. # The key has been used, remove it from the agent
  172. env.carrying = None
  173. return True
  174. return False
  175. def canOverlap(self):
  176. """The agent can only walk over this cell when the door is open"""
  177. return self.isOpen
  178. class Key(WorldObj):
  179. def __init__(self, color='blue'):
  180. super(Key, self).__init__('key', color)
  181. def canPickup(self):
  182. return True
  183. def render(self, r):
  184. self._setColor(r)
  185. # Vertical quad
  186. r.drawPolygon([
  187. (16, 10),
  188. (20, 10),
  189. (20, 28),
  190. (16, 28)
  191. ])
  192. # Teeth
  193. r.drawPolygon([
  194. (12, 19),
  195. (16, 19),
  196. (16, 21),
  197. (12, 21)
  198. ])
  199. r.drawPolygon([
  200. (12, 26),
  201. (16, 26),
  202. (16, 28),
  203. (12, 28)
  204. ])
  205. r.drawCircle(18, 9, 6)
  206. r.setLineColor(0, 0, 0)
  207. r.setColor(0, 0, 0)
  208. r.drawCircle(18, 9, 2)
  209. class Ball(WorldObj):
  210. def __init__(self, color='blue'):
  211. super(Ball, self).__init__('ball', color)
  212. def canPickup(self):
  213. return True
  214. def render(self, r):
  215. self._setColor(r)
  216. r.drawCircle(CELL_PIXELS * 0.5, CELL_PIXELS * 0.5, 10)
  217. class Box(WorldObj):
  218. def __init__(self, color, contains=None):
  219. super(Box, self).__init__('box', color)
  220. self.contains = contains
  221. def render(self, r):
  222. c = COLORS[self.color]
  223. r.setLineColor(c[0], c[1], c[2])
  224. r.setColor(0, 0, 0)
  225. r.setLineWidth(2)
  226. r.drawPolygon([
  227. (4 , CELL_PIXELS-4),
  228. (CELL_PIXELS-4, CELL_PIXELS-4),
  229. (CELL_PIXELS-4, 4),
  230. (4 , 4)
  231. ])
  232. r.drawLine(
  233. 4,
  234. CELL_PIXELS / 2,
  235. CELL_PIXELS - 4,
  236. CELL_PIXELS / 2
  237. )
  238. r.setLineWidth(1)
  239. def toggle(self, env, pos):
  240. # Replace the box by its contents
  241. env.grid.set(*pos, self.contains)
  242. return True
  243. class Grid:
  244. """
  245. Represent a grid and operations on it
  246. """
  247. def __init__(self, width, height):
  248. assert width >= 4
  249. assert height >= 4
  250. self.width = width
  251. self.height = height
  252. self.grid = [None] * width * height
  253. def __contains__(self, key):
  254. if isinstance(key, WorldObj):
  255. for e in self.grid:
  256. if e is key:
  257. return True
  258. elif isinstance(key, tuple):
  259. for e in self.grid:
  260. if e is None:
  261. continue
  262. if (e.color, e.type) == key:
  263. return True
  264. return False
  265. def copy(self):
  266. from copy import deepcopy
  267. return deepcopy(self)
  268. def set(self, i, j, v):
  269. assert i >= 0 and i < self.width
  270. assert j >= 0 and j < self.height
  271. self.grid[j * self.width + i] = v
  272. def get(self, i, j):
  273. assert i >= 0 and i < self.width
  274. assert j >= 0 and j < self.height
  275. return self.grid[j * self.width + i]
  276. def rotateLeft(self):
  277. """
  278. Rotate the grid to the left (counter-clockwise)
  279. """
  280. grid = Grid(self.width, self.height)
  281. for j in range(0, self.height):
  282. for i in range(0, self.width):
  283. v = self.get(self.width - 1 - j, i)
  284. grid.set(i, j, v)
  285. return grid
  286. def slice(self, topX, topY, width, height):
  287. """
  288. Get a subset of the grid
  289. """
  290. grid = Grid(width, height)
  291. for j in range(0, height):
  292. for i in range(0, width):
  293. x = topX + i
  294. y = topY + j
  295. if x >= 0 and x < self.width and \
  296. y >= 0 and y < self.height:
  297. v = self.get(x, y)
  298. else:
  299. v = Wall()
  300. grid.set(i, j, v)
  301. return grid
  302. def render(self, r, tileSize):
  303. """
  304. Render this grid at a given scale
  305. :param r: target renderer object
  306. :param tileSize: tile size in pixels
  307. """
  308. assert r.width == self.width * tileSize
  309. assert r.height == self.height * tileSize
  310. # Total grid size at native scale
  311. widthPx = self.width * CELL_PIXELS
  312. heightPx = self.height * CELL_PIXELS
  313. # Draw background (out-of-world) tiles the same colors as walls
  314. # so the agent understands these areas are not reachable
  315. c = COLORS['grey']
  316. r.setLineColor(c[0], c[1], c[2])
  317. r.setColor(c[0], c[1], c[2])
  318. r.drawPolygon([
  319. (0 , heightPx),
  320. (widthPx, heightPx),
  321. (widthPx, 0),
  322. (0 , 0)
  323. ])
  324. r.push()
  325. # Internally, we draw at the "large" full-grid resolution, but we
  326. # use the renderer to scale back to the desired size
  327. r.scale(tileSize / CELL_PIXELS, tileSize / CELL_PIXELS)
  328. # Draw the background of the in-world cells black
  329. r.fillRect(
  330. 0,
  331. 0,
  332. widthPx,
  333. heightPx,
  334. 0, 0, 0
  335. )
  336. # Draw grid lines
  337. r.setLineColor(100, 100, 100)
  338. for rowIdx in range(0, self.height):
  339. y = CELL_PIXELS * rowIdx
  340. r.drawLine(0, y, widthPx, y)
  341. for colIdx in range(0, self.width):
  342. x = CELL_PIXELS * colIdx
  343. r.drawLine(x, 0, x, heightPx)
  344. # Render the grid
  345. for j in range(0, self.height):
  346. for i in range(0, self.width):
  347. cell = self.get(i, j)
  348. if cell == None:
  349. continue
  350. r.push()
  351. r.translate(i * CELL_PIXELS, j * CELL_PIXELS)
  352. cell.render(r)
  353. r.pop()
  354. r.pop()
  355. def encode(self):
  356. """
  357. Produce a compact numpy encoding of the grid
  358. """
  359. codeSize = self.width * self.height * 3
  360. array = np.zeros(shape=(self.width, self.height, 3), dtype='uint8')
  361. for j in range(0, self.height):
  362. for i in range(0, self.width):
  363. v = self.get(i, j)
  364. if v == None:
  365. continue
  366. array[i, j, 0] = OBJECT_TO_IDX[v.type]
  367. array[i, j, 1] = COLOR_TO_IDX[v.color]
  368. if hasattr(v, 'isOpen') and v.isOpen:
  369. array[i, j, 2] = 1
  370. return array
  371. def decode(array):
  372. """
  373. Decode an array grid encoding back into a grid
  374. """
  375. width = array.shape[0]
  376. height = array.shape[1]
  377. assert array.shape[2] == 3
  378. grid = Grid(width, height)
  379. for j in range(0, height):
  380. for i in range(0, width):
  381. typeIdx = array[i, j, 0]
  382. colorIdx = array[i, j, 1]
  383. openIdx = array[i, j, 2]
  384. if typeIdx == 0:
  385. continue
  386. objType = IDX_TO_OBJECT[typeIdx]
  387. color = IDX_TO_COLOR[colorIdx]
  388. isOpen = True if openIdx == 1 else 0
  389. if objType == 'wall':
  390. v = Wall(color)
  391. elif objType == 'ball':
  392. v = Ball(color)
  393. elif objType == 'key':
  394. v = Key(color)
  395. elif objType == 'box':
  396. v = Box(color)
  397. elif objType == 'door':
  398. v = Door(color, isOpen)
  399. elif objType == 'locked_door':
  400. v = LockedDoor(color, isOpen)
  401. elif objType == 'goal':
  402. v = Goal()
  403. else:
  404. assert False, "unknown obj type in decode '%s'" % objType
  405. grid.set(i, j, v)
  406. return grid
  407. class MiniGridEnv(gym.Env):
  408. """
  409. 2D grid world game environment
  410. """
  411. metadata = {
  412. 'render.modes': ['human', 'rgb_array', 'pixmap'],
  413. 'video.frames_per_second' : 10
  414. }
  415. # Enumeration of possible actions
  416. class Actions(IntEnum):
  417. left = 0
  418. right = 1
  419. forward = 2
  420. # Toggle/pick up/activate object
  421. toggle = 3
  422. # Wait/stay put/do nothing
  423. wait = 4
  424. def __init__(self, gridSize=16, maxSteps=100):
  425. # Action enumeration for this environment
  426. self.actions = MiniGridEnv.Actions
  427. # Actions are discrete integer values
  428. self.action_space = spaces.Discrete(len(self.actions))
  429. # Observations are dictionaries containing an
  430. # encoding of the grid and a textual 'mission' string
  431. self.observation_space = spaces.Box(
  432. low=0,
  433. high=255,
  434. shape=OBS_ARRAY_SIZE,
  435. dtype='uint8'
  436. )
  437. self.observation_space = spaces.Dict({
  438. 'image': self.observation_space
  439. })
  440. # Range of possible rewards
  441. self.reward_range = (-1, 1000)
  442. # Renderer object used to render the whole grid (full-scale)
  443. self.gridRender = None
  444. # Renderer used to render observations (small-scale agent view)
  445. self.obsRender = None
  446. # Environment configuration
  447. self.gridSize = gridSize
  448. self.maxSteps = maxSteps
  449. self.startPos = (1, 1)
  450. self.startDir = 0
  451. # Initialize the state
  452. self.seed()
  453. self.reset()
  454. def _genGrid(self, width, height):
  455. assert False, "_genGrid needs to be implemented by each environment"
  456. def reset(self):
  457. # Generate a new random grid at the start of each episode
  458. # To keep the same grid for each episode, call env.seed() with
  459. # the same seed before calling env.reset()
  460. self.grid = self._genGrid(self.gridSize, self.gridSize)
  461. # Place the agent in the starting position and direction
  462. self.agentPos = self.startPos
  463. self.agentDir = self.startDir
  464. # Item picked up, being carried, initially nothing
  465. self.carrying = None
  466. # Step count since episode start
  467. self.stepCount = 0
  468. # Return first observation
  469. obs = self._genObs()
  470. return obs
  471. def seed(self, seed=1337):
  472. # Seed the random number generator
  473. self.np_random, _ = seeding.np_random(seed)
  474. return [seed]
  475. def _randInt(self, low, high):
  476. """
  477. Generate random integer in [low,high[
  478. """
  479. return self.np_random.randint(low, high)
  480. def _randPos(self, xLow, xHigh, yLow, yHigh):
  481. """
  482. Generate a random (x,y) position tuple
  483. """
  484. return (
  485. self.np_random.randint(xLow, xHigh),
  486. self.np_random.randint(yLow, yHigh)
  487. )
  488. def _randElem(self, iterable):
  489. lst = list(iterable)
  490. idx = self._randInt(0, len(lst))
  491. return lst[idx]
  492. def getStepsRemaining(self):
  493. return self.maxSteps - self.stepCount
  494. def getDirVec(self):
  495. """
  496. Get the direction vector for the agent, pointing in the direction
  497. of forward movement.
  498. """
  499. # Pointing right
  500. if self.agentDir == 0:
  501. return (1, 0)
  502. # Down (positive Y)
  503. elif self.agentDir == 1:
  504. return (0, 1)
  505. # Pointing left
  506. elif self.agentDir == 2:
  507. return (-1, 0)
  508. # Up (negative Y)
  509. elif self.agentDir == 3:
  510. return (0, -1)
  511. else:
  512. assert False
  513. def getViewExts(self):
  514. """
  515. Get the extents of the square set of tiles visible to the agent
  516. Note: the bottom extent indices are not included in the set
  517. """
  518. # Facing right
  519. if self.agentDir == 0:
  520. topX = self.agentPos[0]
  521. topY = self.agentPos[1] - AGENT_VIEW_SIZE // 2
  522. # Facing down
  523. elif self.agentDir == 1:
  524. topX = self.agentPos[0] - AGENT_VIEW_SIZE // 2
  525. topY = self.agentPos[1]
  526. # Facing right
  527. elif self.agentDir == 2:
  528. topX = self.agentPos[0] - AGENT_VIEW_SIZE + 1
  529. topY = self.agentPos[1] - AGENT_VIEW_SIZE // 2
  530. # Facing up
  531. elif self.agentDir == 3:
  532. topX = self.agentPos[0] - AGENT_VIEW_SIZE // 2
  533. topY = self.agentPos[1] - AGENT_VIEW_SIZE + 1
  534. else:
  535. assert False, "invalid agent direction"
  536. botX = topX + AGENT_VIEW_SIZE
  537. botY = topY + AGENT_VIEW_SIZE
  538. return (topX, topY, botX, botY)
  539. def agentSees(self, x, y):
  540. """
  541. Check if a grid position is visible to the agent
  542. """
  543. topX, topY, botX, botY = self.getViewExts()
  544. return (x >= topX and x < botX and y >= topY and y < botY)
  545. def step(self, action):
  546. self.stepCount += 1
  547. reward = 0
  548. done = False
  549. # Rotate left
  550. if action == self.actions.left:
  551. self.agentDir -= 1
  552. if self.agentDir < 0:
  553. self.agentDir += 4
  554. # Rotate right
  555. elif action == self.actions.right:
  556. self.agentDir = (self.agentDir + 1) % 4
  557. # Move forward
  558. elif action == self.actions.forward:
  559. u, v = self.getDirVec()
  560. newPos = (self.agentPos[0] + u, self.agentPos[1] + v)
  561. targetCell = self.grid.get(newPos[0], newPos[1])
  562. if targetCell == None or targetCell.canOverlap():
  563. self.agentPos = newPos
  564. elif targetCell.type == 'goal':
  565. done = True
  566. reward = 1000 - self.stepCount
  567. # Pick up or trigger/activate an item
  568. elif action == self.actions.toggle:
  569. u, v = self.getDirVec()
  570. objPos = (self.agentPos[0] + u, self.agentPos[1] + v)
  571. cell = self.grid.get(*objPos)
  572. if cell and cell.canPickup():
  573. if self.carrying is None:
  574. self.carrying = cell
  575. self.grid.set(*objPos, None)
  576. elif cell:
  577. cell.toggle(self, objPos)
  578. elif self.carrying:
  579. self.grid.set(*objPos, self.carrying)
  580. self.carrying = None
  581. # Wait/do nothing
  582. elif action == self.actions.wait:
  583. pass
  584. else:
  585. assert False, "unknown action"
  586. if self.stepCount >= self.maxSteps:
  587. done = True
  588. obs = self._genObs()
  589. return obs, reward, done, {}
  590. def _genObs(self):
  591. """
  592. Generate the agent's view (partially observable, low-resolution encoding)
  593. """
  594. topX, topY, botX, botY = self.getViewExts()
  595. grid = self.grid.slice(topX, topY, AGENT_VIEW_SIZE, AGENT_VIEW_SIZE)
  596. for i in range(self.agentDir + 1):
  597. grid = grid.rotateLeft()
  598. # Make it so the agent sees what it's carrying
  599. # We do this by placing the carried object at the agent's position
  600. # in the agent's partially observable view
  601. agentPos = grid.width // 2, grid.height - 1
  602. if self.carrying:
  603. grid.set(*agentPos, self.carrying)
  604. else:
  605. grid.set(*agentPos, None)
  606. # Encode the partially observable view into a numpy array
  607. image = grid.encode()
  608. assert hasattr(self, 'mission'), "environments must define a textual mission string"
  609. # Observations are dictionaries with both an image
  610. # and a textual mission string
  611. obs = {
  612. 'image': image,
  613. 'mission': self.mission
  614. }
  615. return obs
  616. def getObsRender(self, obs):
  617. """
  618. Render an agent observation for visualization
  619. """
  620. if self.obsRender == None:
  621. self.obsRender = Renderer(
  622. AGENT_VIEW_SIZE * CELL_PIXELS // 2,
  623. AGENT_VIEW_SIZE * CELL_PIXELS // 2
  624. )
  625. r = self.obsRender
  626. r.beginFrame()
  627. grid = Grid.decode(obs)
  628. # Render the whole grid
  629. grid.render(r, CELL_PIXELS // 2)
  630. # Draw the agent
  631. r.push()
  632. r.scale(0.5, 0.5)
  633. r.translate(
  634. CELL_PIXELS * (0.5 + AGENT_VIEW_SIZE // 2),
  635. CELL_PIXELS * (AGENT_VIEW_SIZE - 0.5)
  636. )
  637. r.rotate(3 * 90)
  638. r.setLineColor(255, 0, 0)
  639. r.setColor(255, 0, 0)
  640. r.drawPolygon([
  641. (-12, 10),
  642. ( 12, 0),
  643. (-12, -10)
  644. ])
  645. r.pop()
  646. r.endFrame()
  647. return r.getPixmap()
  648. def render(self, mode='human', close=False):
  649. """
  650. Render the whole-grid human view
  651. """
  652. if close:
  653. if self.gridRender:
  654. self.gridRender.close()
  655. return
  656. if self.gridRender is None:
  657. self.gridRender = Renderer(
  658. self.gridSize * CELL_PIXELS,
  659. self.gridSize * CELL_PIXELS,
  660. True if mode == 'human' else False
  661. )
  662. r = self.gridRender
  663. r.beginFrame()
  664. # Render the whole grid
  665. self.grid.render(r, CELL_PIXELS)
  666. # Draw the agent
  667. r.push()
  668. r.translate(
  669. CELL_PIXELS * (self.agentPos[0] + 0.5),
  670. CELL_PIXELS * (self.agentPos[1] + 0.5)
  671. )
  672. r.rotate(self.agentDir * 90)
  673. r.setLineColor(255, 0, 0)
  674. r.setColor(255, 0, 0)
  675. r.drawPolygon([
  676. (-12, 10),
  677. ( 12, 0),
  678. (-12, -10)
  679. ])
  680. r.pop()
  681. # Highlight what the agent can see
  682. topX, topY, botX, botY = self.getViewExts()
  683. r.fillRect(
  684. topX * CELL_PIXELS,
  685. topY * CELL_PIXELS,
  686. AGENT_VIEW_SIZE * CELL_PIXELS,
  687. AGENT_VIEW_SIZE * CELL_PIXELS,
  688. 200, 200, 200, 75
  689. )
  690. r.endFrame()
  691. if mode == 'rgb_array':
  692. return r.getArray()
  693. elif mode == 'pixmap':
  694. return r.getPixmap()
  695. return r