main.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. import copy
  2. import glob
  3. import os
  4. import time
  5. import operator
  6. from functools import reduce
  7. import gym
  8. import numpy as np
  9. import torch
  10. import torch.nn as nn
  11. import torch.nn.functional as F
  12. import torch.optim as optim
  13. from torch.autograd import Variable
  14. from arguments import get_args
  15. from vec_env.dummy_vec_env import DummyVecEnv
  16. from vec_env.subproc_vec_env import SubprocVecEnv
  17. from envs import make_env
  18. from kfac import KFACOptimizer
  19. from model import RecMLPPolicy, MLPPolicy, CNNPolicy
  20. from storage import RolloutStorage
  21. from visualize import visdom_plot
  22. args = get_args()
  23. assert args.algo in ['a2c', 'ppo', 'acktr']
  24. if args.recurrent_policy:
  25. assert args.algo in ['a2c', 'ppo'], 'Recurrent policy is not implemented for ACKTR'
  26. num_updates = int(args.num_frames) // args.num_steps // args.num_processes
  27. torch.manual_seed(args.seed)
  28. if args.cuda:
  29. torch.cuda.manual_seed(args.seed)
  30. try:
  31. os.makedirs(args.log_dir)
  32. except OSError:
  33. files = glob.glob(os.path.join(args.log_dir, '*.monitor.csv'))
  34. for f in files:
  35. os.remove(f)
  36. def main():
  37. print("#######")
  38. print("WARNING: All rewards are clipped or normalized so you need to use a monitor (see envs.py) or visdom plot to get true rewards")
  39. print("#######")
  40. os.environ['OMP_NUM_THREADS'] = '1'
  41. if args.vis:
  42. from visdom import Visdom
  43. viz = Visdom()
  44. win = None
  45. envs = [make_env(args.env_name, args.seed, i, args.log_dir)
  46. for i in range(args.num_processes)]
  47. if args.num_processes > 1:
  48. envs = SubprocVecEnv(envs)
  49. else:
  50. envs = DummyVecEnv(envs)
  51. # Maxime: commented this out because it very much changes the behavior
  52. # of the code for seemingly arbitrary reasons
  53. #if len(envs.observation_space.shape) == 1:
  54. # envs = VecNormalize(envs)
  55. obs_shape = envs.observation_space.shape
  56. obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:])
  57. obs_numel = reduce(operator.mul, obs_shape, 1)
  58. if len(obs_shape) == 3 and obs_numel > 1024:
  59. actor_critic = CNNPolicy(obs_shape[0], envs.action_space, args.recurrent_policy)
  60. elif args.recurrent_policy:
  61. actor_critic = RecMLPPolicy(obs_numel, envs.action_space)
  62. else:
  63. actor_critic = MLPPolicy(obs_numel, envs.action_space)
  64. # Maxime: log some info about the model and its size
  65. modelSize = 0
  66. for p in actor_critic.parameters():
  67. pSize = reduce(operator.mul, p.size(), 1)
  68. modelSize += pSize
  69. print(str(actor_critic))
  70. print('Total model size: %d' % modelSize)
  71. if envs.action_space.__class__.__name__ == "Discrete":
  72. action_shape = 1
  73. else:
  74. action_shape = envs.action_space.shape[0]
  75. if args.cuda:
  76. actor_critic.cuda()
  77. if args.algo == 'a2c':
  78. optimizer = optim.RMSprop(actor_critic.parameters(), args.lr, eps=args.eps, alpha=args.alpha)
  79. elif args.algo == 'ppo':
  80. optimizer = optim.Adam(actor_critic.parameters(), args.lr, eps=args.eps)
  81. elif args.algo == 'acktr':
  82. optimizer = KFACOptimizer(actor_critic)
  83. rollouts = RolloutStorage(args.num_steps, args.num_processes, obs_shape, envs.action_space, actor_critic.state_size)
  84. current_obs = torch.zeros(args.num_processes, *obs_shape)
  85. def update_current_obs(obs):
  86. shape_dim0 = envs.observation_space.shape[0]
  87. obs = torch.from_numpy(obs).float()
  88. if args.num_stack > 1:
  89. current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
  90. current_obs[:, -shape_dim0:] = obs
  91. obs = envs.reset()
  92. update_current_obs(obs)
  93. rollouts.observations[0].copy_(current_obs)
  94. # These variables are used to compute average rewards for all processes.
  95. episode_rewards = torch.zeros([args.num_processes, 1])
  96. final_rewards = torch.zeros([args.num_processes, 1])
  97. if args.cuda:
  98. current_obs = current_obs.cuda()
  99. rollouts.cuda()
  100. start = time.time()
  101. for j in range(num_updates):
  102. for step in range(args.num_steps):
  103. # Sample actions
  104. value, action, action_log_prob, states = actor_critic.act(
  105. Variable(rollouts.observations[step], volatile=True),
  106. Variable(rollouts.states[step], volatile=True),
  107. Variable(rollouts.masks[step], volatile=True)
  108. )
  109. cpu_actions = action.data.squeeze(1).cpu().numpy()
  110. # Obser reward and next obs
  111. obs, reward, done, info = envs.step(cpu_actions)
  112. reward = torch.from_numpy(np.expand_dims(np.stack(reward), 1)).float()
  113. episode_rewards += reward
  114. # If done then clean the history of observations.
  115. masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
  116. final_rewards *= masks
  117. final_rewards += (1 - masks) * episode_rewards
  118. episode_rewards *= masks
  119. if args.cuda:
  120. masks = masks.cuda()
  121. if current_obs.dim() == 4:
  122. current_obs *= masks.unsqueeze(2).unsqueeze(2)
  123. elif current_obs.dim() == 3:
  124. current_obs *= masks.unsqueeze(2)
  125. else:
  126. current_obs *= masks
  127. update_current_obs(obs)
  128. rollouts.insert(step, current_obs, states.data, action.data, action_log_prob.data, value.data, reward, masks)
  129. next_value = actor_critic(
  130. Variable(rollouts.observations[-1], volatile=True),
  131. Variable(rollouts.states[-1], volatile=True),
  132. Variable(rollouts.masks[-1], volatile=True)
  133. )[0].data
  134. rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
  135. if args.algo in ['a2c', 'acktr']:
  136. values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(
  137. Variable(rollouts.observations[:-1].view(-1, *obs_shape)),
  138. Variable(rollouts.states[:-1].view(-1, actor_critic.state_size)),
  139. Variable(rollouts.masks[:-1].view(-1, 1)),
  140. Variable(rollouts.actions.view(-1, action_shape))
  141. )
  142. values = values.view(args.num_steps, args.num_processes, 1)
  143. action_log_probs = action_log_probs.view(args.num_steps, args.num_processes, 1)
  144. advantages = Variable(rollouts.returns[:-1]) - values
  145. value_loss = advantages.pow(2).mean()
  146. action_loss = -(Variable(advantages.data) * action_log_probs).mean()
  147. if args.algo == 'acktr' and optimizer.steps % optimizer.Ts == 0:
  148. # Sampled fisher, see Martens 2014
  149. actor_critic.zero_grad()
  150. pg_fisher_loss = -action_log_probs.mean()
  151. value_noise = Variable(torch.randn(values.size()))
  152. if args.cuda:
  153. value_noise = value_noise.cuda()
  154. sample_values = values + value_noise
  155. vf_fisher_loss = -(values - Variable(sample_values.data)).pow(2).mean()
  156. fisher_loss = pg_fisher_loss + vf_fisher_loss
  157. optimizer.acc_stats = True
  158. fisher_loss.backward(retain_graph=True)
  159. optimizer.acc_stats = False
  160. optimizer.zero_grad()
  161. (value_loss * args.value_loss_coef + action_loss - dist_entropy * args.entropy_coef).backward()
  162. if args.algo == 'a2c':
  163. nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
  164. optimizer.step()
  165. elif args.algo == 'ppo':
  166. advantages = rollouts.returns[:-1] - rollouts.value_preds[:-1]
  167. advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5)
  168. for e in range(args.ppo_epoch):
  169. if args.recurrent_policy:
  170. data_generator = rollouts.recurrent_generator(advantages, args.num_mini_batch)
  171. else:
  172. data_generator = rollouts.feed_forward_generator(advantages, args.num_mini_batch)
  173. for sample in data_generator:
  174. observations_batch, states_batch, actions_batch, \
  175. return_batch, masks_batch, old_action_log_probs_batch, \
  176. adv_targ = sample
  177. # Reshape to do in a single forward pass for all steps
  178. values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(
  179. Variable(observations_batch),
  180. Variable(states_batch),
  181. Variable(masks_batch),
  182. Variable(actions_batch)
  183. )
  184. adv_targ = Variable(adv_targ)
  185. ratio = torch.exp(action_log_probs - Variable(old_action_log_probs_batch))
  186. surr1 = ratio * adv_targ
  187. surr2 = torch.clamp(ratio, 1.0 - args.clip_param, 1.0 + args.clip_param) * adv_targ
  188. action_loss = -torch.min(surr1, surr2).mean() # PPO's pessimistic surrogate (L^CLIP)
  189. value_loss = (Variable(return_batch) - values).pow(2).mean()
  190. optimizer.zero_grad()
  191. (value_loss + action_loss - dist_entropy * args.entropy_coef).backward()
  192. nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
  193. optimizer.step()
  194. rollouts.after_update()
  195. if j % args.save_interval == 0 and args.save_dir != "":
  196. save_path = os.path.join(args.save_dir, args.algo)
  197. try:
  198. os.makedirs(save_path)
  199. except OSError:
  200. pass
  201. # A really ugly way to save a model to CPU
  202. save_model = actor_critic
  203. if args.cuda:
  204. save_model = copy.deepcopy(actor_critic).cpu()
  205. save_model = [save_model,
  206. hasattr(envs, 'ob_rms') and envs.ob_rms or None]
  207. torch.save(save_model, os.path.join(save_path, args.env_name + ".pt"))
  208. if j % args.log_interval == 0:
  209. end = time.time()
  210. total_num_steps = (j + 1) * args.num_processes * args.num_steps
  211. print("Updates {}, num timesteps {}, FPS {}, mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}, entropy {:.5f}, value loss {:.5f}, policy loss {:.5f}".
  212. format(j, total_num_steps,
  213. int(total_num_steps / (end - start)),
  214. final_rewards.mean(),
  215. final_rewards.median(),
  216. final_rewards.min(),
  217. final_rewards.max(), dist_entropy.data[0],
  218. value_loss.data[0], action_loss.data[0]))
  219. if args.vis and j % args.vis_interval == 0:
  220. try:
  221. # Sometimes monitor doesn't properly flush the outputs
  222. win = visdom_plot(viz, win, args.log_dir, args.env_name, args.algo)
  223. except IOError:
  224. pass
  225. if __name__ == "__main__":
  226. main()