envs.py 1.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. import os
  2. import numpy
  3. import gym
  4. from gym.spaces.box import Box
  5. from baselines.common.atari_wrappers import make_atari, wrap_deepmind
  6. try:
  7. import pybullet_envs
  8. except ImportError:
  9. pass
  10. try:
  11. import gym_minigrid
  12. from gym_minigrid.wrappers import *
  13. except:
  14. pass
  15. def make_env(env_id, seed, rank, log_dir):
  16. def _thunk():
  17. env = gym.make(env_id)
  18. is_atari = hasattr(gym.envs, 'atari') and isinstance(env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
  19. if is_atari:
  20. env = make_atari(env_id)
  21. env.seed(seed + rank)
  22. if is_atari:
  23. env = wrap_deepmind(env)
  24. #env = FlatObsWrapper(env)
  25. # If the input has shape (W,H,3), wrap for PyTorch convolutions
  26. obs_shape = env.observation_space.shape
  27. if len(obs_shape) == 3 and obs_shape[2] == 3:
  28. env = WrapPyTorch(env)
  29. return env
  30. return _thunk
  31. class WrapPyTorch(gym.ObservationWrapper):
  32. def __init__(self, env=None):
  33. super(WrapPyTorch, self).__init__(env)
  34. obs_shape = self.observation_space.shape
  35. self.observation_space = Box(
  36. self.observation_space.low[0,0,0],
  37. self.observation_space.high[0,0,0],
  38. [obs_shape[2], obs_shape[1], obs_shape[0]]
  39. )
  40. def _observation(self, observation):
  41. return observation.transpose(2, 0, 1)