minigrid.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302
  1. import hashlib
  2. import math
  3. import string
  4. from enum import IntEnum
  5. import gym
  6. import numpy as np
  7. from gym import spaces
  8. # Size in pixels of a tile in the full-scale human view
  9. from gym_minigrid.rendering import (
  10. downsample,
  11. fill_coords,
  12. highlight_img,
  13. point_in_circle,
  14. point_in_line,
  15. point_in_rect,
  16. point_in_triangle,
  17. rotate_fn,
  18. )
  19. TILE_PIXELS = 32
  20. # Map of color names to RGB values
  21. COLORS = {
  22. "red": np.array([255, 0, 0]),
  23. "green": np.array([0, 255, 0]),
  24. "blue": np.array([0, 0, 255]),
  25. "purple": np.array([112, 39, 195]),
  26. "yellow": np.array([255, 255, 0]),
  27. "grey": np.array([100, 100, 100]),
  28. }
  29. COLOR_NAMES = sorted(list(COLORS.keys()))
  30. # Used to map colors to integers
  31. COLOR_TO_IDX = {"red": 0, "green": 1, "blue": 2, "purple": 3, "yellow": 4, "grey": 5}
  32. IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
  33. # Map of object type to integers
  34. OBJECT_TO_IDX = {
  35. "unseen": 0,
  36. "empty": 1,
  37. "wall": 2,
  38. "floor": 3,
  39. "door": 4,
  40. "key": 5,
  41. "ball": 6,
  42. "box": 7,
  43. "goal": 8,
  44. "lava": 9,
  45. "agent": 10,
  46. }
  47. IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
  48. # Map of state names to integers
  49. STATE_TO_IDX = {
  50. "open": 0,
  51. "closed": 1,
  52. "locked": 2,
  53. }
  54. # Map of agent direction indices to vectors
  55. DIR_TO_VEC = [
  56. # Pointing right (positive X)
  57. np.array((1, 0)),
  58. # Down (positive Y)
  59. np.array((0, 1)),
  60. # Pointing left (negative X)
  61. np.array((-1, 0)),
  62. # Up (negative Y)
  63. np.array((0, -1)),
  64. ]
  65. class WorldObj:
  66. """
  67. Base class for grid world objects
  68. """
  69. def __init__(self, type, color):
  70. assert type in OBJECT_TO_IDX, type
  71. assert color in COLOR_TO_IDX, color
  72. self.type = type
  73. self.color = color
  74. self.contains = None
  75. # Initial position of the object
  76. self.init_pos = None
  77. # Current position of the object
  78. self.cur_pos = None
  79. def can_overlap(self):
  80. """Can the agent overlap with this?"""
  81. return False
  82. def can_pickup(self):
  83. """Can the agent pick this up?"""
  84. return False
  85. def can_contain(self):
  86. """Can this contain another object?"""
  87. return False
  88. def see_behind(self):
  89. """Can the agent see behind this object?"""
  90. return True
  91. def toggle(self, env, pos):
  92. """Method to trigger/toggle an action this object performs"""
  93. return False
  94. def encode(self):
  95. """Encode the a description of this object as a 3-tuple of integers"""
  96. return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], 0)
  97. @staticmethod
  98. def decode(type_idx, color_idx, state):
  99. """Create an object from a 3-tuple state description"""
  100. obj_type = IDX_TO_OBJECT[type_idx]
  101. color = IDX_TO_COLOR[color_idx]
  102. if obj_type == "empty" or obj_type == "unseen":
  103. return None
  104. # State, 0: open, 1: closed, 2: locked
  105. is_open = state == 0
  106. is_locked = state == 2
  107. if obj_type == "wall":
  108. v = Wall(color)
  109. elif obj_type == "floor":
  110. v = Floor(color)
  111. elif obj_type == "ball":
  112. v = Ball(color)
  113. elif obj_type == "key":
  114. v = Key(color)
  115. elif obj_type == "box":
  116. v = Box(color)
  117. elif obj_type == "door":
  118. v = Door(color, is_open, is_locked)
  119. elif obj_type == "goal":
  120. v = Goal()
  121. elif obj_type == "lava":
  122. v = Lava()
  123. else:
  124. assert False, "unknown object type in decode '%s'" % obj_type
  125. return v
  126. def render(self, r):
  127. """Draw this object with the given renderer"""
  128. raise NotImplementedError
  129. class Goal(WorldObj):
  130. def __init__(self):
  131. super().__init__("goal", "green")
  132. def can_overlap(self):
  133. return True
  134. def render(self, img):
  135. fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
  136. class Floor(WorldObj):
  137. """
  138. Colored floor tile the agent can walk over
  139. """
  140. def __init__(self, color="blue"):
  141. super().__init__("floor", color)
  142. def can_overlap(self):
  143. return True
  144. def render(self, img):
  145. # Give the floor a pale color
  146. color = COLORS[self.color] / 2
  147. fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color)
  148. class Lava(WorldObj):
  149. def __init__(self):
  150. super().__init__("lava", "red")
  151. def can_overlap(self):
  152. return True
  153. def render(self, img):
  154. c = (255, 128, 0)
  155. # Background color
  156. fill_coords(img, point_in_rect(0, 1, 0, 1), c)
  157. # Little waves
  158. for i in range(3):
  159. ylo = 0.3 + 0.2 * i
  160. yhi = 0.4 + 0.2 * i
  161. fill_coords(img, point_in_line(0.1, ylo, 0.3, yhi, r=0.03), (0, 0, 0))
  162. fill_coords(img, point_in_line(0.3, yhi, 0.5, ylo, r=0.03), (0, 0, 0))
  163. fill_coords(img, point_in_line(0.5, ylo, 0.7, yhi, r=0.03), (0, 0, 0))
  164. fill_coords(img, point_in_line(0.7, yhi, 0.9, ylo, r=0.03), (0, 0, 0))
  165. class Wall(WorldObj):
  166. def __init__(self, color="grey"):
  167. super().__init__("wall", color)
  168. def see_behind(self):
  169. return False
  170. def render(self, img):
  171. fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
  172. class Door(WorldObj):
  173. def __init__(self, color, is_open=False, is_locked=False):
  174. super().__init__("door", color)
  175. self.is_open = is_open
  176. self.is_locked = is_locked
  177. def can_overlap(self):
  178. """The agent can only walk over this cell when the door is open"""
  179. return self.is_open
  180. def see_behind(self):
  181. return self.is_open
  182. def toggle(self, env, pos):
  183. # If the player has the right key to open the door
  184. if self.is_locked:
  185. if isinstance(env.carrying, Key) and env.carrying.color == self.color:
  186. self.is_locked = False
  187. self.is_open = True
  188. return True
  189. return False
  190. self.is_open = not self.is_open
  191. return True
  192. def encode(self):
  193. """Encode the a description of this object as a 3-tuple of integers"""
  194. # State, 0: open, 1: closed, 2: locked
  195. if self.is_open:
  196. state = 0
  197. elif self.is_locked:
  198. state = 2
  199. # if door is closed and unlocked
  200. else:
  201. state = 1
  202. return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
  203. def render(self, img):
  204. c = COLORS[self.color]
  205. if self.is_open:
  206. fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c)
  207. fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0, 0, 0))
  208. return
  209. # Door frame and door
  210. if self.is_locked:
  211. fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
  212. fill_coords(img, point_in_rect(0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c))
  213. # Draw key slot
  214. fill_coords(img, point_in_rect(0.52, 0.75, 0.50, 0.56), c)
  215. else:
  216. fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
  217. fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0, 0, 0))
  218. fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c)
  219. fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0, 0, 0))
  220. # Draw door handle
  221. fill_coords(img, point_in_circle(cx=0.75, cy=0.50, r=0.08), c)
  222. class Key(WorldObj):
  223. def __init__(self, color="blue"):
  224. super().__init__("key", color)
  225. def can_pickup(self):
  226. return True
  227. def render(self, img):
  228. c = COLORS[self.color]
  229. # Vertical quad
  230. fill_coords(img, point_in_rect(0.50, 0.63, 0.31, 0.88), c)
  231. # Teeth
  232. fill_coords(img, point_in_rect(0.38, 0.50, 0.59, 0.66), c)
  233. fill_coords(img, point_in_rect(0.38, 0.50, 0.81, 0.88), c)
  234. # Ring
  235. fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.190), c)
  236. fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.064), (0, 0, 0))
  237. class Ball(WorldObj):
  238. def __init__(self, color="blue"):
  239. super().__init__("ball", color)
  240. def can_pickup(self):
  241. return True
  242. def render(self, img):
  243. fill_coords(img, point_in_circle(0.5, 0.5, 0.31), COLORS[self.color])
  244. class Box(WorldObj):
  245. def __init__(self, color, contains=None):
  246. super().__init__("box", color)
  247. self.contains = contains
  248. def can_pickup(self):
  249. return True
  250. def render(self, img):
  251. c = COLORS[self.color]
  252. # Outline
  253. fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c)
  254. fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0, 0, 0))
  255. # Horizontal slit
  256. fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c)
  257. def toggle(self, env, pos):
  258. # Replace the box by its contents
  259. env.grid.set(*pos, self.contains)
  260. return True
  261. class Grid:
  262. """
  263. Represent a grid and operations on it
  264. """
  265. # Static cache of pre-renderer tiles
  266. tile_cache = {}
  267. def __init__(self, width, height):
  268. assert width >= 3
  269. assert height >= 3
  270. self.width = width
  271. self.height = height
  272. self.grid = [None] * width * height
  273. def __contains__(self, key):
  274. if isinstance(key, WorldObj):
  275. for e in self.grid:
  276. if e is key:
  277. return True
  278. elif isinstance(key, tuple):
  279. for e in self.grid:
  280. if e is None:
  281. continue
  282. if (e.color, e.type) == key:
  283. return True
  284. if key[0] is None and key[1] == e.type:
  285. return True
  286. return False
  287. def __eq__(self, other):
  288. grid1 = self.encode()
  289. grid2 = other.encode()
  290. return np.array_equal(grid2, grid1)
  291. def __ne__(self, other):
  292. return not self == other
  293. def copy(self):
  294. from copy import deepcopy
  295. return deepcopy(self)
  296. def set(self, i, j, v):
  297. assert i >= 0 and i < self.width
  298. assert j >= 0 and j < self.height
  299. self.grid[j * self.width + i] = v
  300. def get(self, i, j):
  301. assert i >= 0 and i < self.width
  302. assert j >= 0 and j < self.height
  303. return self.grid[j * self.width + i]
  304. def horz_wall(self, x, y, length=None, obj_type=Wall):
  305. if length is None:
  306. length = self.width - x
  307. for i in range(0, length):
  308. self.set(x + i, y, obj_type())
  309. def vert_wall(self, x, y, length=None, obj_type=Wall):
  310. if length is None:
  311. length = self.height - y
  312. for j in range(0, length):
  313. self.set(x, y + j, obj_type())
  314. def wall_rect(self, x, y, w, h):
  315. self.horz_wall(x, y, w)
  316. self.horz_wall(x, y + h - 1, w)
  317. self.vert_wall(x, y, h)
  318. self.vert_wall(x + w - 1, y, h)
  319. def rotate_left(self):
  320. """
  321. Rotate the grid to the left (counter-clockwise)
  322. """
  323. grid = Grid(self.height, self.width)
  324. for i in range(self.width):
  325. for j in range(self.height):
  326. v = self.get(i, j)
  327. grid.set(j, grid.height - 1 - i, v)
  328. return grid
  329. def slice(self, topX, topY, width, height):
  330. """
  331. Get a subset of the grid
  332. """
  333. grid = Grid(width, height)
  334. for j in range(0, height):
  335. for i in range(0, width):
  336. x = topX + i
  337. y = topY + j
  338. if x >= 0 and x < self.width and y >= 0 and y < self.height:
  339. v = self.get(x, y)
  340. else:
  341. v = Wall()
  342. grid.set(i, j, v)
  343. return grid
  344. @classmethod
  345. def render_tile(
  346. cls, obj, agent_dir=None, highlight=False, tile_size=TILE_PIXELS, subdivs=3
  347. ):
  348. """
  349. Render a tile and cache the result
  350. """
  351. # Hash map lookup key for the cache
  352. key = (agent_dir, highlight, tile_size)
  353. key = obj.encode() + key if obj else key
  354. if key in cls.tile_cache:
  355. return cls.tile_cache[key]
  356. img = np.zeros(
  357. shape=(tile_size * subdivs, tile_size * subdivs, 3), dtype=np.uint8
  358. )
  359. # Draw the grid lines (top and left edges)
  360. fill_coords(img, point_in_rect(0, 0.031, 0, 1), (100, 100, 100))
  361. fill_coords(img, point_in_rect(0, 1, 0, 0.031), (100, 100, 100))
  362. if obj is not None:
  363. obj.render(img)
  364. # Overlay the agent on top
  365. if agent_dir is not None:
  366. tri_fn = point_in_triangle(
  367. (0.12, 0.19),
  368. (0.87, 0.50),
  369. (0.12, 0.81),
  370. )
  371. # Rotate the agent based on its direction
  372. tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5, theta=0.5 * math.pi * agent_dir)
  373. fill_coords(img, tri_fn, (255, 0, 0))
  374. # Highlight the cell if needed
  375. if highlight:
  376. highlight_img(img)
  377. # Downsample the image to perform supersampling/anti-aliasing
  378. img = downsample(img, subdivs)
  379. # Cache the rendered tile
  380. cls.tile_cache[key] = img
  381. return img
  382. def render(self, tile_size, agent_pos=None, agent_dir=None, highlight_mask=None):
  383. """
  384. Render this grid at a given scale
  385. :param r: target renderer object
  386. :param tile_size: tile size in pixels
  387. """
  388. if highlight_mask is None:
  389. highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  390. # Compute the total grid size
  391. width_px = self.width * tile_size
  392. height_px = self.height * tile_size
  393. img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8)
  394. # Render the grid
  395. for j in range(0, self.height):
  396. for i in range(0, self.width):
  397. cell = self.get(i, j)
  398. agent_here = np.array_equal(agent_pos, (i, j))
  399. tile_img = Grid.render_tile(
  400. cell,
  401. agent_dir=agent_dir if agent_here else None,
  402. highlight=highlight_mask[i, j],
  403. tile_size=tile_size,
  404. )
  405. ymin = j * tile_size
  406. ymax = (j + 1) * tile_size
  407. xmin = i * tile_size
  408. xmax = (i + 1) * tile_size
  409. img[ymin:ymax, xmin:xmax, :] = tile_img
  410. return img
  411. def encode(self, vis_mask=None):
  412. """
  413. Produce a compact numpy encoding of the grid
  414. """
  415. if vis_mask is None:
  416. vis_mask = np.ones((self.width, self.height), dtype=bool)
  417. array = np.zeros((self.width, self.height, 3), dtype="uint8")
  418. for i in range(self.width):
  419. for j in range(self.height):
  420. if vis_mask[i, j]:
  421. v = self.get(i, j)
  422. if v is None:
  423. array[i, j, 0] = OBJECT_TO_IDX["empty"]
  424. array[i, j, 1] = 0
  425. array[i, j, 2] = 0
  426. else:
  427. array[i, j, :] = v.encode()
  428. return array
  429. @staticmethod
  430. def decode(array):
  431. """
  432. Decode an array grid encoding back into a grid
  433. """
  434. width, height, channels = array.shape
  435. assert channels == 3
  436. vis_mask = np.ones(shape=(width, height), dtype=bool)
  437. grid = Grid(width, height)
  438. for i in range(width):
  439. for j in range(height):
  440. type_idx, color_idx, state = array[i, j]
  441. v = WorldObj.decode(type_idx, color_idx, state)
  442. grid.set(i, j, v)
  443. vis_mask[i, j] = type_idx != OBJECT_TO_IDX["unseen"]
  444. return grid, vis_mask
  445. def process_vis(self, agent_pos):
  446. mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  447. mask[agent_pos[0], agent_pos[1]] = True
  448. for j in reversed(range(0, self.height)):
  449. for i in range(0, self.width - 1):
  450. if not mask[i, j]:
  451. continue
  452. cell = self.get(i, j)
  453. if cell and not cell.see_behind():
  454. continue
  455. mask[i + 1, j] = True
  456. if j > 0:
  457. mask[i + 1, j - 1] = True
  458. mask[i, j - 1] = True
  459. for i in reversed(range(1, self.width)):
  460. if not mask[i, j]:
  461. continue
  462. cell = self.get(i, j)
  463. if cell and not cell.see_behind():
  464. continue
  465. mask[i - 1, j] = True
  466. if j > 0:
  467. mask[i - 1, j - 1] = True
  468. mask[i, j - 1] = True
  469. for j in range(0, self.height):
  470. for i in range(0, self.width):
  471. if not mask[i, j]:
  472. self.set(i, j, None)
  473. return mask
  474. class MiniGridEnv(gym.Env):
  475. """
  476. 2D grid world game environment
  477. """
  478. metadata = {
  479. # Deprecated: use 'render_modes' instead
  480. "render.modes": ["human", "rgb_array"],
  481. "video.frames_per_second": 10, # Deprecated: use 'render_fps' instead
  482. "render_modes": ["human", "rgb_array"],
  483. "render_fps": 10,
  484. }
  485. # Enumeration of possible actions
  486. class Actions(IntEnum):
  487. # Turn left, turn right, move forward
  488. left = 0
  489. right = 1
  490. forward = 2
  491. # Pick up an object
  492. pickup = 3
  493. # Drop an object
  494. drop = 4
  495. # Toggle/activate an object
  496. toggle = 5
  497. # Done completing task
  498. done = 6
  499. def __init__(
  500. self,
  501. grid_size: int = None,
  502. width: int = None,
  503. height: int = None,
  504. max_steps: int = 100,
  505. see_through_walls: bool = False,
  506. agent_view_size: int = 7,
  507. render_mode: str = None,
  508. **kwargs
  509. ):
  510. # Can't set both grid_size and width/height
  511. if grid_size:
  512. assert width is None and height is None
  513. width = grid_size
  514. height = grid_size
  515. # Action enumeration for this environment
  516. self.actions = MiniGridEnv.Actions
  517. # Actions are discrete integer values
  518. self.action_space = spaces.Discrete(len(self.actions))
  519. # Number of cells (width and height) in the agent view
  520. assert agent_view_size % 2 == 1
  521. assert agent_view_size >= 3
  522. self.agent_view_size = agent_view_size
  523. # Observations are dictionaries containing an
  524. # encoding of the grid and a textual 'mission' string
  525. self.observation_space = spaces.Box(
  526. low=0,
  527. high=255,
  528. shape=(self.agent_view_size, self.agent_view_size, 3),
  529. dtype="uint8",
  530. )
  531. self.observation_space = spaces.Dict(
  532. {
  533. "image": self.observation_space,
  534. "direction": spaces.Discrete(4),
  535. "mission": spaces.Text(
  536. max_length=200,
  537. charset=string.ascii_letters + string.digits + " .,!-",
  538. ),
  539. }
  540. )
  541. # render mode
  542. self.render_mode = render_mode
  543. # Range of possible rewards
  544. self.reward_range = (0, 1)
  545. # Environment configuration
  546. self.width = width
  547. self.height = height
  548. self.max_steps = max_steps
  549. self.see_through_walls = see_through_walls
  550. # Current position and direction of the agent
  551. self.agent_pos: np.ndarray = None
  552. self.agent_dir: int = None
  553. # Initialize the state
  554. self.reset()
  555. def reset(self, *, seed=None, return_info=False, options=None):
  556. super().reset(seed=seed)
  557. # Current position and direction of the agent
  558. self.agent_pos = None
  559. self.agent_dir = None
  560. # Generate a new random grid at the start of each episode
  561. self._gen_grid(self.width, self.height)
  562. # These fields should be defined by _gen_grid
  563. assert self.agent_pos is not None
  564. assert self.agent_dir is not None
  565. # Check that the agent doesn't overlap with an object
  566. start_cell = self.grid.get(*self.agent_pos)
  567. assert start_cell is None or start_cell.can_overlap()
  568. # Item picked up, being carried, initially nothing
  569. self.carrying = None
  570. # Step count since episode start
  571. self.step_count = 0
  572. # Return first observation
  573. obs = self.gen_obs()
  574. return obs
  575. def hash(self, size=16):
  576. """Compute a hash that uniquely identifies the current state of the environment.
  577. :param size: Size of the hashing
  578. """
  579. sample_hash = hashlib.sha256()
  580. to_encode = [self.grid.encode().tolist(), self.agent_pos, self.agent_dir]
  581. for item in to_encode:
  582. sample_hash.update(str(item).encode("utf8"))
  583. return sample_hash.hexdigest()[:size]
  584. @property
  585. def steps_remaining(self):
  586. return self.max_steps - self.step_count
  587. def __str__(self):
  588. """
  589. Produce a pretty string of the environment's grid along with the agent.
  590. A grid cell is represented by 2-character string, the first one for
  591. the object and the second one for the color.
  592. """
  593. # Map of object types to short string
  594. OBJECT_TO_STR = {
  595. "wall": "W",
  596. "floor": "F",
  597. "door": "D",
  598. "key": "K",
  599. "ball": "A",
  600. "box": "B",
  601. "goal": "G",
  602. "lava": "V",
  603. }
  604. # Map agent's direction to short string
  605. AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
  606. str = ""
  607. for j in range(self.grid.height):
  608. for i in range(self.grid.width):
  609. if i == self.agent_pos[0] and j == self.agent_pos[1]:
  610. str += 2 * AGENT_DIR_TO_STR[self.agent_dir]
  611. continue
  612. c = self.grid.get(i, j)
  613. if c is None:
  614. str += " "
  615. continue
  616. if c.type == "door":
  617. if c.is_open:
  618. str += "__"
  619. elif c.is_locked:
  620. str += "L" + c.color[0].upper()
  621. else:
  622. str += "D" + c.color[0].upper()
  623. continue
  624. str += OBJECT_TO_STR[c.type] + c.color[0].upper()
  625. if j < self.grid.height - 1:
  626. str += "\n"
  627. return str
  628. def _gen_grid(self, width, height):
  629. assert False, "_gen_grid needs to be implemented by each environment"
  630. def _reward(self):
  631. """
  632. Compute the reward to be given upon success
  633. """
  634. return 1 - 0.9 * (self.step_count / self.max_steps)
  635. def _rand_int(self, low, high):
  636. """
  637. Generate random integer in [low,high[
  638. """
  639. return self.np_random.integers(low, high)
  640. def _rand_float(self, low, high):
  641. """
  642. Generate random float in [low,high[
  643. """
  644. return self.np_random.uniform(low, high)
  645. def _rand_bool(self):
  646. """
  647. Generate random boolean value
  648. """
  649. return self.np_random.integers(0, 2) == 0
  650. def _rand_elem(self, iterable):
  651. """
  652. Pick a random element in a list
  653. """
  654. lst = list(iterable)
  655. idx = self._rand_int(0, len(lst))
  656. return lst[idx]
  657. def _rand_subset(self, iterable, num_elems):
  658. """
  659. Sample a random subset of distinct elements of a list
  660. """
  661. lst = list(iterable)
  662. assert num_elems <= len(lst)
  663. out = []
  664. while len(out) < num_elems:
  665. elem = self._rand_elem(lst)
  666. lst.remove(elem)
  667. out.append(elem)
  668. return out
  669. def _rand_color(self):
  670. """
  671. Generate a random color name (string)
  672. """
  673. return self._rand_elem(COLOR_NAMES)
  674. def _rand_pos(self, xLow, xHigh, yLow, yHigh):
  675. """
  676. Generate a random (x,y) position tuple
  677. """
  678. return (
  679. self.np_random.integers(xLow, xHigh),
  680. self.np_random.integers(yLow, yHigh),
  681. )
  682. def place_obj(self, obj, top=None, size=None, reject_fn=None, max_tries=math.inf):
  683. """
  684. Place an object at an empty position in the grid
  685. :param top: top-left position of the rectangle where to place
  686. :param size: size of the rectangle where to place
  687. :param reject_fn: function to filter out potential positions
  688. """
  689. if top is None:
  690. top = (0, 0)
  691. else:
  692. top = (max(top[0], 0), max(top[1], 0))
  693. if size is None:
  694. size = (self.grid.width, self.grid.height)
  695. num_tries = 0
  696. while True:
  697. # This is to handle with rare cases where rejection sampling
  698. # gets stuck in an infinite loop
  699. if num_tries > max_tries:
  700. raise RecursionError("rejection sampling failed in place_obj")
  701. num_tries += 1
  702. pos = np.array(
  703. (
  704. self._rand_int(top[0], min(top[0] + size[0], self.grid.width)),
  705. self._rand_int(top[1], min(top[1] + size[1], self.grid.height)),
  706. )
  707. )
  708. # Don't place the object on top of another object
  709. if self.grid.get(*pos) is not None:
  710. continue
  711. # Don't place the object where the agent is
  712. if np.array_equal(pos, self.agent_pos):
  713. continue
  714. # Check if there is a filtering criterion
  715. if reject_fn and reject_fn(self, pos):
  716. continue
  717. break
  718. self.grid.set(*pos, obj)
  719. if obj is not None:
  720. obj.init_pos = pos
  721. obj.cur_pos = pos
  722. return pos
  723. def put_obj(self, obj, i, j):
  724. """
  725. Put an object at a specific position in the grid
  726. """
  727. self.grid.set(i, j, obj)
  728. obj.init_pos = (i, j)
  729. obj.cur_pos = (i, j)
  730. def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf):
  731. """
  732. Set the agent's starting point at an empty position in the grid
  733. """
  734. self.agent_pos = None
  735. pos = self.place_obj(None, top, size, max_tries=max_tries)
  736. self.agent_pos = pos
  737. if rand_dir:
  738. self.agent_dir = self._rand_int(0, 4)
  739. return pos
  740. @property
  741. def dir_vec(self):
  742. """
  743. Get the direction vector for the agent, pointing in the direction
  744. of forward movement.
  745. """
  746. assert self.agent_dir >= 0 and self.agent_dir < 4
  747. return DIR_TO_VEC[self.agent_dir]
  748. @property
  749. def right_vec(self):
  750. """
  751. Get the vector pointing to the right of the agent.
  752. """
  753. dx, dy = self.dir_vec
  754. return np.array((-dy, dx))
  755. @property
  756. def front_pos(self):
  757. """
  758. Get the position of the cell that is right in front of the agent
  759. """
  760. return self.agent_pos + self.dir_vec
  761. def get_view_coords(self, i, j):
  762. """
  763. Translate and rotate absolute grid coordinates (i, j) into the
  764. agent's partially observable view (sub-grid). Note that the resulting
  765. coordinates may be negative or outside of the agent's view size.
  766. """
  767. ax, ay = self.agent_pos
  768. dx, dy = self.dir_vec
  769. rx, ry = self.right_vec
  770. # Compute the absolute coordinates of the top-left view corner
  771. sz = self.agent_view_size
  772. hs = self.agent_view_size // 2
  773. tx = ax + (dx * (sz - 1)) - (rx * hs)
  774. ty = ay + (dy * (sz - 1)) - (ry * hs)
  775. lx = i - tx
  776. ly = j - ty
  777. # Project the coordinates of the object relative to the top-left
  778. # corner onto the agent's own coordinate system
  779. vx = rx * lx + ry * ly
  780. vy = -(dx * lx + dy * ly)
  781. return vx, vy
  782. def get_view_exts(self, agent_view_size=None):
  783. """
  784. Get the extents of the square set of tiles visible to the agent
  785. Note: the bottom extent indices are not included in the set
  786. if agent_view_size is None, use self.agent_view_size
  787. """
  788. agent_view_size = agent_view_size or self.agent_view_size
  789. # Facing right
  790. if self.agent_dir == 0:
  791. topX = self.agent_pos[0]
  792. topY = self.agent_pos[1] - agent_view_size // 2
  793. # Facing down
  794. elif self.agent_dir == 1:
  795. topX = self.agent_pos[0] - agent_view_size // 2
  796. topY = self.agent_pos[1]
  797. # Facing left
  798. elif self.agent_dir == 2:
  799. topX = self.agent_pos[0] - agent_view_size + 1
  800. topY = self.agent_pos[1] - agent_view_size // 2
  801. # Facing up
  802. elif self.agent_dir == 3:
  803. topX = self.agent_pos[0] - agent_view_size // 2
  804. topY = self.agent_pos[1] - agent_view_size + 1
  805. else:
  806. assert False, "invalid agent direction"
  807. botX = topX + agent_view_size
  808. botY = topY + agent_view_size
  809. return (topX, topY, botX, botY)
  810. def relative_coords(self, x, y):
  811. """
  812. Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates
  813. """
  814. vx, vy = self.get_view_coords(x, y)
  815. if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size:
  816. return None
  817. return vx, vy
  818. def in_view(self, x, y):
  819. """
  820. check if a grid position is visible to the agent
  821. """
  822. return self.relative_coords(x, y) is not None
  823. def agent_sees(self, x, y):
  824. """
  825. Check if a non-empty grid position is visible to the agent
  826. """
  827. coordinates = self.relative_coords(x, y)
  828. if coordinates is None:
  829. return False
  830. vx, vy = coordinates
  831. obs = self.gen_obs()
  832. obs_grid, _ = Grid.decode(obs["image"])
  833. obs_cell = obs_grid.get(vx, vy)
  834. world_cell = self.grid.get(x, y)
  835. return obs_cell is not None and obs_cell.type == world_cell.type
  836. def step(self, action):
  837. self.step_count += 1
  838. reward = 0
  839. done = False
  840. # Get the position in front of the agent
  841. fwd_pos = self.front_pos
  842. # Get the contents of the cell in front of the agent
  843. fwd_cell = self.grid.get(*fwd_pos)
  844. # Rotate left
  845. if action == self.actions.left:
  846. self.agent_dir -= 1
  847. if self.agent_dir < 0:
  848. self.agent_dir += 4
  849. # Rotate right
  850. elif action == self.actions.right:
  851. self.agent_dir = (self.agent_dir + 1) % 4
  852. # Move forward
  853. elif action == self.actions.forward:
  854. if fwd_cell is None or fwd_cell.can_overlap():
  855. self.agent_pos = fwd_pos
  856. if fwd_cell is not None and fwd_cell.type == "goal":
  857. done = True
  858. reward = self._reward()
  859. if fwd_cell is not None and fwd_cell.type == "lava":
  860. done = True
  861. # Pick up an object
  862. elif action == self.actions.pickup:
  863. if fwd_cell and fwd_cell.can_pickup():
  864. if self.carrying is None:
  865. self.carrying = fwd_cell
  866. self.carrying.cur_pos = np.array([-1, -1])
  867. self.grid.set(*fwd_pos, None)
  868. # Drop an object
  869. elif action == self.actions.drop:
  870. if not fwd_cell and self.carrying:
  871. self.grid.set(*fwd_pos, self.carrying)
  872. self.carrying.cur_pos = fwd_pos
  873. self.carrying = None
  874. # Toggle/activate an object
  875. elif action == self.actions.toggle:
  876. if fwd_cell:
  877. fwd_cell.toggle(self, fwd_pos)
  878. # Done action (not used by default)
  879. elif action == self.actions.done:
  880. pass
  881. else:
  882. assert False, "unknown action"
  883. if self.step_count >= self.max_steps:
  884. done = True
  885. obs = self.gen_obs()
  886. return obs, reward, done, {}
  887. def gen_obs_grid(self, agent_view_size=None):
  888. """
  889. Generate the sub-grid observed by the agent.
  890. This method also outputs a visibility mask telling us which grid
  891. cells the agent can actually see.
  892. if agent_view_size is None, self.agent_view_size is used
  893. """
  894. topX, topY, botX, botY = self.get_view_exts(agent_view_size)
  895. agent_view_size = agent_view_size or self.agent_view_size
  896. grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size)
  897. for i in range(self.agent_dir + 1):
  898. grid = grid.rotate_left()
  899. # Process occluders and visibility
  900. # Note that this incurs some performance cost
  901. if not self.see_through_walls:
  902. vis_mask = grid.process_vis(
  903. agent_pos=(agent_view_size // 2, agent_view_size - 1)
  904. )
  905. else:
  906. vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool)
  907. # Make it so the agent sees what it's carrying
  908. # We do this by placing the carried object at the agent's position
  909. # in the agent's partially observable view
  910. agent_pos = grid.width // 2, grid.height - 1
  911. if self.carrying:
  912. grid.set(*agent_pos, self.carrying)
  913. else:
  914. grid.set(*agent_pos, None)
  915. return grid, vis_mask
  916. def gen_obs(self):
  917. """
  918. Generate the agent's view (partially observable, low-resolution encoding)
  919. """
  920. grid, vis_mask = self.gen_obs_grid()
  921. # Encode the partially observable view into a numpy array
  922. image = grid.encode(vis_mask)
  923. assert hasattr(
  924. self, "mission"
  925. ), "environments must define a textual mission string"
  926. # Observations are dictionaries containing:
  927. # - an image (partially observable view of the environment)
  928. # - the agent's direction/orientation (acting as a compass)
  929. # - a textual mission string (instructions for the agent)
  930. obs = {"image": image, "direction": self.agent_dir, "mission": self.mission}
  931. return obs
  932. def get_obs_render(self, obs, tile_size=TILE_PIXELS // 2):
  933. """
  934. Render an agent observation for visualization
  935. """
  936. grid, vis_mask = Grid.decode(obs)
  937. # Render the whole grid
  938. img = grid.render(
  939. tile_size,
  940. agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1),
  941. agent_dir=3,
  942. highlight_mask=vis_mask,
  943. )
  944. return img
  945. def render(self, mode="human", close=False, highlight=True, tile_size=TILE_PIXELS):
  946. """
  947. Render the whole-grid human view
  948. """
  949. if self.render_mode is not None:
  950. mode = self.render_mode
  951. if close:
  952. if self.window:
  953. self.window.close()
  954. return
  955. if mode == "human" and not self.window:
  956. import gym_minigrid.window
  957. self.window = gym_minigrid.window.Window("gym_minigrid")
  958. self.window.show(block=False)
  959. # Compute which cells are visible to the agent
  960. _, vis_mask = self.gen_obs_grid()
  961. # Compute the world coordinates of the bottom-left corner
  962. # of the agent's view area
  963. f_vec = self.dir_vec
  964. r_vec = self.right_vec
  965. top_left = (
  966. self.agent_pos
  967. + f_vec * (self.agent_view_size - 1)
  968. - r_vec * (self.agent_view_size // 2)
  969. )
  970. # Mask of which cells to highlight
  971. highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  972. # For each cell in the visibility mask
  973. for vis_j in range(0, self.agent_view_size):
  974. for vis_i in range(0, self.agent_view_size):
  975. # If this cell is not visible, don't highlight it
  976. if not vis_mask[vis_i, vis_j]:
  977. continue
  978. # Compute the world coordinates of this cell
  979. abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i)
  980. if abs_i < 0 or abs_i >= self.width:
  981. continue
  982. if abs_j < 0 or abs_j >= self.height:
  983. continue
  984. # Mark this cell to be highlighted
  985. highlight_mask[abs_i, abs_j] = True
  986. # Render the whole grid
  987. img = self.grid.render(
  988. tile_size,
  989. self.agent_pos,
  990. self.agent_dir,
  991. highlight_mask=highlight_mask if highlight else None,
  992. )
  993. if mode == "human":
  994. self.window.set_caption(self.mission)
  995. self.window.show_img(img)
  996. return img
  997. def close(self):
  998. if self.window:
  999. self.window.close()
  1000. return