minigrid_env.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785
  1. from __future__ import annotations
  2. import hashlib
  3. import math
  4. from abc import abstractmethod
  5. from typing import Any, Iterable, SupportsFloat, TypeVar
  6. import gymnasium as gym
  7. import numpy as np
  8. import pygame
  9. import pygame.freetype
  10. from gymnasium import spaces
  11. from gymnasium.core import ActType, ObsType
  12. from minigrid.core.actions import Actions
  13. from minigrid.core.constants import COLOR_NAMES, DIR_TO_VEC, TILE_PIXELS
  14. from minigrid.core.grid import Grid
  15. from minigrid.core.mission import MissionSpace
  16. from minigrid.core.world_object import Point, WorldObj
  17. T = TypeVar("T")
  18. class MiniGridEnv(gym.Env):
  19. """
  20. 2D grid world game environment
  21. """
  22. metadata = {
  23. "render_modes": ["human", "rgb_array"],
  24. "render_fps": 10,
  25. }
  26. def __init__(
  27. self,
  28. mission_space: MissionSpace,
  29. grid_size: int | None = None,
  30. width: int | None = None,
  31. height: int | None = None,
  32. max_steps: int = 100,
  33. see_through_walls: bool = False,
  34. agent_view_size: int = 7,
  35. render_mode: str | None = None,
  36. screen_size: int | None = 640,
  37. highlight: bool = True,
  38. tile_size: int = TILE_PIXELS,
  39. agent_pov: bool = False,
  40. ):
  41. # Initialize mission
  42. self.mission = mission_space.sample()
  43. # Can't set both grid_size and width/height
  44. if grid_size:
  45. assert width is None and height is None
  46. width = grid_size
  47. height = grid_size
  48. assert width is not None and height is not None
  49. # Action enumeration for this environment
  50. self.actions = Actions
  51. # Actions are discrete integer values
  52. self.action_space = spaces.Discrete(len(self.actions))
  53. # Number of cells (width and height) in the agent view
  54. assert agent_view_size % 2 == 1
  55. assert agent_view_size >= 3
  56. self.agent_view_size = agent_view_size
  57. # Observations are dictionaries containing an
  58. # encoding of the grid and a textual 'mission' string
  59. image_observation_space = spaces.Box(
  60. low=0,
  61. high=255,
  62. shape=(self.agent_view_size, self.agent_view_size, 3),
  63. dtype="uint8",
  64. )
  65. self.observation_space = spaces.Dict(
  66. {
  67. "image": image_observation_space,
  68. "direction": spaces.Discrete(4),
  69. "mission": mission_space,
  70. }
  71. )
  72. # Range of possible rewards
  73. self.reward_range = (0, 1)
  74. self.screen_size = screen_size
  75. self.render_size = None
  76. self.window = None
  77. self.clock = None
  78. # Environment configuration
  79. self.width = width
  80. self.height = height
  81. assert isinstance(
  82. max_steps, int
  83. ), f"The argument max_steps must be an integer, got: {type(max_steps)}"
  84. self.max_steps = max_steps
  85. self.see_through_walls = see_through_walls
  86. # Current position and direction of the agent
  87. self.agent_pos: np.ndarray | tuple[int, int] = None
  88. self.agent_dir: int = None
  89. # Current grid and mission and carrying
  90. self.grid = Grid(width, height)
  91. self.carrying = None
  92. # Rendering attributes
  93. self.render_mode = render_mode
  94. self.highlight = highlight
  95. self.tile_size = tile_size
  96. self.agent_pov = agent_pov
  97. def reset(
  98. self,
  99. *,
  100. seed: int | None = None,
  101. options: dict[str, Any] | None = None,
  102. ) -> tuple[ObsType, dict[str, Any]]:
  103. super().reset(seed=seed)
  104. # Reinitialize episode-specific variables
  105. self.agent_pos = (-1, -1)
  106. self.agent_dir = -1
  107. # Generate a new random grid at the start of each episode
  108. self._gen_grid(self.width, self.height)
  109. # These fields should be defined by _gen_grid
  110. assert (
  111. self.agent_pos >= (0, 0)
  112. if isinstance(self.agent_pos, tuple)
  113. else all(self.agent_pos >= 0) and self.agent_dir >= 0
  114. )
  115. # Check that the agent doesn't overlap with an object
  116. start_cell = self.grid.get(*self.agent_pos)
  117. assert start_cell is None or start_cell.can_overlap()
  118. # Item picked up, being carried, initially nothing
  119. self.carrying = None
  120. # Step count since episode start
  121. self.step_count = 0
  122. if self.render_mode == "human":
  123. self.render()
  124. # Return first observation
  125. obs = self.gen_obs()
  126. return obs, {}
  127. def hash(self, size=16):
  128. """Compute a hash that uniquely identifies the current state of the environment.
  129. :param size: Size of the hashing
  130. """
  131. sample_hash = hashlib.sha256()
  132. to_encode = [self.grid.encode().tolist(), self.agent_pos, self.agent_dir]
  133. for item in to_encode:
  134. sample_hash.update(str(item).encode("utf8"))
  135. return sample_hash.hexdigest()[:size]
  136. @property
  137. def steps_remaining(self):
  138. return self.max_steps - self.step_count
  139. def pprint_grid(self):
  140. """
  141. Produce a pretty string of the environment's grid along with the agent.
  142. A grid cell is represented by 2-character string, the first one for
  143. the object and the second one for the color.
  144. """
  145. if self.agent_pos is None or self.agent_dir is None or self.grid is None:
  146. raise ValueError(
  147. "The environment hasn't been `reset` therefore the `agent_pos`, `agent_dir` or `grid` are unknown."
  148. )
  149. # Map of object types to short string
  150. OBJECT_TO_STR = {
  151. "wall": "W",
  152. "floor": "F",
  153. "door": "D",
  154. "key": "K",
  155. "ball": "A",
  156. "box": "B",
  157. "goal": "G",
  158. "lava": "V",
  159. }
  160. # Map agent's direction to short string
  161. AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
  162. output = ""
  163. for j in range(self.grid.height):
  164. for i in range(self.grid.width):
  165. if i == self.agent_pos[0] and j == self.agent_pos[1]:
  166. output += 2 * AGENT_DIR_TO_STR[self.agent_dir]
  167. continue
  168. tile = self.grid.get(i, j)
  169. if tile is None:
  170. output += " "
  171. continue
  172. if tile.type == "door":
  173. if tile.is_open:
  174. output += "__"
  175. elif tile.is_locked:
  176. output += "L" + tile.color[0].upper()
  177. else:
  178. output += "D" + tile.color[0].upper()
  179. continue
  180. output += OBJECT_TO_STR[tile.type] + tile.color[0].upper()
  181. if j < self.grid.height - 1:
  182. output += "\n"
  183. return output
  184. @abstractmethod
  185. def _gen_grid(self, width, height):
  186. pass
  187. def _reward(self) -> float:
  188. """
  189. Compute the reward to be given upon success
  190. """
  191. return 1 - 0.9 * (self.step_count / self.max_steps)
  192. def _rand_int(self, low: int, high: int) -> int:
  193. """
  194. Generate random integer in [low,high[
  195. """
  196. return self.np_random.integers(low, high)
  197. def _rand_float(self, low: float, high: float) -> float:
  198. """
  199. Generate random float in [low,high[
  200. """
  201. return self.np_random.uniform(low, high)
  202. def _rand_bool(self) -> bool:
  203. """
  204. Generate random boolean value
  205. """
  206. return self.np_random.integers(0, 2) == 0
  207. def _rand_elem(self, iterable: Iterable[T]) -> T:
  208. """
  209. Pick a random element in a list
  210. """
  211. lst = list(iterable)
  212. idx = self._rand_int(0, len(lst))
  213. return lst[idx]
  214. def _rand_subset(self, iterable: Iterable[T], num_elems: int) -> list[T]:
  215. """
  216. Sample a random subset of distinct elements of a list
  217. """
  218. lst = list(iterable)
  219. assert num_elems <= len(lst)
  220. out: list[T] = []
  221. while len(out) < num_elems:
  222. elem = self._rand_elem(lst)
  223. lst.remove(elem)
  224. out.append(elem)
  225. return out
  226. def _rand_color(self) -> str:
  227. """
  228. Generate a random color name (string)
  229. """
  230. return self._rand_elem(COLOR_NAMES)
  231. def _rand_pos(
  232. self, x_low: int, x_high: int, y_low: int, y_high: int
  233. ) -> tuple[int, int]:
  234. """
  235. Generate a random (x,y) position tuple
  236. """
  237. return (
  238. self.np_random.integers(x_low, x_high),
  239. self.np_random.integers(y_low, y_high),
  240. )
  241. def place_obj(
  242. self,
  243. obj: WorldObj | None,
  244. top: Point = None,
  245. size: tuple[int, int] = None,
  246. reject_fn=None,
  247. max_tries=math.inf,
  248. ):
  249. """
  250. Place an object at an empty position in the grid
  251. :param top: top-left position of the rectangle where to place
  252. :param size: size of the rectangle where to place
  253. :param reject_fn: function to filter out potential positions
  254. """
  255. if top is None:
  256. top = (0, 0)
  257. else:
  258. top = (max(top[0], 0), max(top[1], 0))
  259. if size is None:
  260. size = (self.grid.width, self.grid.height)
  261. num_tries = 0
  262. while True:
  263. # This is to handle with rare cases where rejection sampling
  264. # gets stuck in an infinite loop
  265. if num_tries > max_tries:
  266. raise RecursionError("rejection sampling failed in place_obj")
  267. num_tries += 1
  268. pos = (
  269. self._rand_int(top[0], min(top[0] + size[0], self.grid.width)),
  270. self._rand_int(top[1], min(top[1] + size[1], self.grid.height)),
  271. )
  272. # Don't place the object on top of another object
  273. if self.grid.get(*pos) is not None:
  274. continue
  275. # Don't place the object where the agent is
  276. if np.array_equal(pos, self.agent_pos):
  277. continue
  278. # Check if there is a filtering criterion
  279. if reject_fn and reject_fn(self, pos):
  280. continue
  281. break
  282. self.grid.set(pos[0], pos[1], obj)
  283. if obj is not None:
  284. obj.init_pos = pos
  285. obj.cur_pos = pos
  286. return pos
  287. def put_obj(self, obj: WorldObj, i: int, j: int):
  288. """
  289. Put an object at a specific position in the grid
  290. """
  291. self.grid.set(i, j, obj)
  292. obj.init_pos = (i, j)
  293. obj.cur_pos = (i, j)
  294. def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf):
  295. """
  296. Set the agent's starting point at an empty position in the grid
  297. """
  298. self.agent_pos = (-1, -1)
  299. pos = self.place_obj(None, top, size, max_tries=max_tries)
  300. self.agent_pos = pos
  301. if rand_dir:
  302. self.agent_dir = self._rand_int(0, 4)
  303. return pos
  304. @property
  305. def dir_vec(self):
  306. """
  307. Get the direction vector for the agent, pointing in the direction
  308. of forward movement.
  309. """
  310. assert (
  311. self.agent_dir >= 0 and self.agent_dir < 4
  312. ), f"Invalid agent_dir: {self.agent_dir} is not within range(0, 4)"
  313. return DIR_TO_VEC[self.agent_dir]
  314. @property
  315. def right_vec(self):
  316. """
  317. Get the vector pointing to the right of the agent.
  318. """
  319. dx, dy = self.dir_vec
  320. return np.array((-dy, dx))
  321. @property
  322. def front_pos(self):
  323. """
  324. Get the position of the cell that is right in front of the agent
  325. """
  326. return self.agent_pos + self.dir_vec
  327. def get_view_coords(self, i, j):
  328. """
  329. Translate and rotate absolute grid coordinates (i, j) into the
  330. agent's partially observable view (sub-grid). Note that the resulting
  331. coordinates may be negative or outside of the agent's view size.
  332. """
  333. ax, ay = self.agent_pos
  334. dx, dy = self.dir_vec
  335. rx, ry = self.right_vec
  336. # Compute the absolute coordinates of the top-left view corner
  337. sz = self.agent_view_size
  338. hs = self.agent_view_size // 2
  339. tx = ax + (dx * (sz - 1)) - (rx * hs)
  340. ty = ay + (dy * (sz - 1)) - (ry * hs)
  341. lx = i - tx
  342. ly = j - ty
  343. # Project the coordinates of the object relative to the top-left
  344. # corner onto the agent's own coordinate system
  345. vx = rx * lx + ry * ly
  346. vy = -(dx * lx + dy * ly)
  347. return vx, vy
  348. def get_view_exts(self, agent_view_size=None):
  349. """
  350. Get the extents of the square set of tiles visible to the agent
  351. Note: the bottom extent indices are not included in the set
  352. if agent_view_size is None, use self.agent_view_size
  353. """
  354. agent_view_size = agent_view_size or self.agent_view_size
  355. # Facing right
  356. if self.agent_dir == 0:
  357. topX = self.agent_pos[0]
  358. topY = self.agent_pos[1] - agent_view_size // 2
  359. # Facing down
  360. elif self.agent_dir == 1:
  361. topX = self.agent_pos[0] - agent_view_size // 2
  362. topY = self.agent_pos[1]
  363. # Facing left
  364. elif self.agent_dir == 2:
  365. topX = self.agent_pos[0] - agent_view_size + 1
  366. topY = self.agent_pos[1] - agent_view_size // 2
  367. # Facing up
  368. elif self.agent_dir == 3:
  369. topX = self.agent_pos[0] - agent_view_size // 2
  370. topY = self.agent_pos[1] - agent_view_size + 1
  371. else:
  372. assert False, "invalid agent direction"
  373. botX = topX + agent_view_size
  374. botY = topY + agent_view_size
  375. return topX, topY, botX, botY
  376. def relative_coords(self, x, y):
  377. """
  378. Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates
  379. """
  380. vx, vy = self.get_view_coords(x, y)
  381. if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size:
  382. return None
  383. return vx, vy
  384. def in_view(self, x, y):
  385. """
  386. check if a grid position is visible to the agent
  387. """
  388. return self.relative_coords(x, y) is not None
  389. def agent_sees(self, x, y):
  390. """
  391. Check if a non-empty grid position is visible to the agent
  392. """
  393. coordinates = self.relative_coords(x, y)
  394. if coordinates is None:
  395. return False
  396. vx, vy = coordinates
  397. obs = self.gen_obs()
  398. obs_grid, _ = Grid.decode(obs["image"])
  399. obs_cell = obs_grid.get(vx, vy)
  400. world_cell = self.grid.get(x, y)
  401. assert world_cell is not None
  402. return obs_cell is not None and obs_cell.type == world_cell.type
  403. def step(
  404. self, action: ActType
  405. ) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]:
  406. self.step_count += 1
  407. reward = 0
  408. terminated = False
  409. truncated = False
  410. # Get the position in front of the agent
  411. fwd_pos = self.front_pos
  412. # Get the contents of the cell in front of the agent
  413. fwd_cell = self.grid.get(*fwd_pos)
  414. # Rotate left
  415. if action == self.actions.left:
  416. self.agent_dir -= 1
  417. if self.agent_dir < 0:
  418. self.agent_dir += 4
  419. # Rotate right
  420. elif action == self.actions.right:
  421. self.agent_dir = (self.agent_dir + 1) % 4
  422. # Move forward
  423. elif action == self.actions.forward:
  424. if fwd_cell is None or fwd_cell.can_overlap():
  425. self.agent_pos = tuple(fwd_pos)
  426. if fwd_cell is not None and fwd_cell.type == "goal":
  427. terminated = True
  428. reward = self._reward()
  429. if fwd_cell is not None and fwd_cell.type == "lava":
  430. terminated = True
  431. # Pick up an object
  432. elif action == self.actions.pickup:
  433. if fwd_cell and fwd_cell.can_pickup():
  434. if self.carrying is None:
  435. self.carrying = fwd_cell
  436. self.carrying.cur_pos = np.array([-1, -1])
  437. self.grid.set(fwd_pos[0], fwd_pos[1], None)
  438. # Drop an object
  439. elif action == self.actions.drop:
  440. if not fwd_cell and self.carrying:
  441. self.grid.set(fwd_pos[0], fwd_pos[1], self.carrying)
  442. self.carrying.cur_pos = fwd_pos
  443. self.carrying = None
  444. # Toggle/activate an object
  445. elif action == self.actions.toggle:
  446. if fwd_cell:
  447. fwd_cell.toggle(self, fwd_pos)
  448. # Done action (not used by default)
  449. elif action == self.actions.done:
  450. pass
  451. else:
  452. raise ValueError(f"Unknown action: {action}")
  453. if self.step_count >= self.max_steps:
  454. truncated = True
  455. if self.render_mode == "human":
  456. self.render()
  457. obs = self.gen_obs()
  458. return obs, reward, terminated, truncated, {}
  459. def gen_obs_grid(self, agent_view_size=None):
  460. """
  461. Generate the sub-grid observed by the agent.
  462. This method also outputs a visibility mask telling us which grid
  463. cells the agent can actually see.
  464. if agent_view_size is None, self.agent_view_size is used
  465. """
  466. topX, topY, botX, botY = self.get_view_exts(agent_view_size)
  467. agent_view_size = agent_view_size or self.agent_view_size
  468. grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size)
  469. for i in range(self.agent_dir + 1):
  470. grid = grid.rotate_left()
  471. # Process occluders and visibility
  472. # Note that this incurs some performance cost
  473. if not self.see_through_walls:
  474. vis_mask = grid.process_vis(
  475. agent_pos=(agent_view_size // 2, agent_view_size - 1)
  476. )
  477. else:
  478. vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool)
  479. # Make it so the agent sees what it's carrying
  480. # We do this by placing the carried object at the agent's position
  481. # in the agent's partially observable view
  482. agent_pos = grid.width // 2, grid.height - 1
  483. if self.carrying:
  484. grid.set(*agent_pos, self.carrying)
  485. else:
  486. grid.set(*agent_pos, None)
  487. return grid, vis_mask
  488. def gen_obs(self):
  489. """
  490. Generate the agent's view (partially observable, low-resolution encoding)
  491. """
  492. grid, vis_mask = self.gen_obs_grid()
  493. # Encode the partially observable view into a numpy array
  494. image = grid.encode(vis_mask)
  495. # Observations are dictionaries containing:
  496. # - an image (partially observable view of the environment)
  497. # - the agent's direction/orientation (acting as a compass)
  498. # - a textual mission string (instructions for the agent)
  499. obs = {"image": image, "direction": self.agent_dir, "mission": self.mission}
  500. return obs
  501. def get_pov_render(self, tile_size):
  502. """
  503. Render an agent's POV observation for visualization
  504. """
  505. grid, vis_mask = self.gen_obs_grid()
  506. # Render the whole grid
  507. img = grid.render(
  508. tile_size,
  509. agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1),
  510. agent_dir=3,
  511. highlight_mask=vis_mask,
  512. )
  513. return img
  514. def get_full_render(self, highlight, tile_size):
  515. """
  516. Render a non-paratial observation for visualization
  517. """
  518. # Compute which cells are visible to the agent
  519. _, vis_mask = self.gen_obs_grid()
  520. # Compute the world coordinates of the bottom-left corner
  521. # of the agent's view area
  522. f_vec = self.dir_vec
  523. r_vec = self.right_vec
  524. top_left = (
  525. self.agent_pos
  526. + f_vec * (self.agent_view_size - 1)
  527. - r_vec * (self.agent_view_size // 2)
  528. )
  529. # Mask of which cells to highlight
  530. highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  531. # For each cell in the visibility mask
  532. for vis_j in range(0, self.agent_view_size):
  533. for vis_i in range(0, self.agent_view_size):
  534. # If this cell is not visible, don't highlight it
  535. if not vis_mask[vis_i, vis_j]:
  536. continue
  537. # Compute the world coordinates of this cell
  538. abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i)
  539. if abs_i < 0 or abs_i >= self.width:
  540. continue
  541. if abs_j < 0 or abs_j >= self.height:
  542. continue
  543. # Mark this cell to be highlighted
  544. highlight_mask[abs_i, abs_j] = True
  545. # Render the whole grid
  546. img = self.grid.render(
  547. tile_size,
  548. self.agent_pos,
  549. self.agent_dir,
  550. highlight_mask=highlight_mask if highlight else None,
  551. )
  552. return img
  553. def get_frame(
  554. self,
  555. highlight: bool = True,
  556. tile_size: int = TILE_PIXELS,
  557. agent_pov: bool = False,
  558. ):
  559. """Returns an RGB image corresponding to the whole environment or the agent's point of view.
  560. Args:
  561. highlight (bool): If true, the agent's field of view or point of view is highlighted with a lighter gray color.
  562. tile_size (int): How many pixels will form a tile from the NxM grid.
  563. agent_pov (bool): If true, the rendered frame will only contain the point of view of the agent.
  564. Returns:
  565. frame (np.ndarray): A frame of type numpy.ndarray with shape (x, y, 3) representing RGB values for the x-by-y pixel image.
  566. """
  567. if agent_pov:
  568. return self.get_pov_render(tile_size)
  569. else:
  570. return self.get_full_render(highlight, tile_size)
  571. def render(self):
  572. img = self.get_frame(self.highlight, self.tile_size, self.agent_pov)
  573. if self.render_mode == "human":
  574. img = np.transpose(img, axes=(1, 0, 2))
  575. if self.render_size is None:
  576. self.render_size = img.shape[:2]
  577. if self.window is None:
  578. pygame.init()
  579. pygame.display.init()
  580. self.window = pygame.display.set_mode(
  581. (self.screen_size, self.screen_size)
  582. )
  583. pygame.display.set_caption("minigrid")
  584. if self.clock is None:
  585. self.clock = pygame.time.Clock()
  586. surf = pygame.surfarray.make_surface(img)
  587. # Create background with mission description
  588. offset = surf.get_size()[0] * 0.1
  589. # offset = 32 if self.agent_pov else 64
  590. bg = pygame.Surface(
  591. (int(surf.get_size()[0] + offset), int(surf.get_size()[1] + offset))
  592. )
  593. bg.convert()
  594. bg.fill((255, 255, 255))
  595. bg.blit(surf, (offset / 2, 0))
  596. bg = pygame.transform.smoothscale(bg, (self.screen_size, self.screen_size))
  597. font_size = 22
  598. text = self.mission
  599. font = pygame.freetype.SysFont(pygame.font.get_default_font(), font_size)
  600. text_rect = font.get_rect(text, size=font_size)
  601. text_rect.center = bg.get_rect().center
  602. text_rect.y = bg.get_height() - font_size * 1.5
  603. font.render_to(bg, text_rect, text, size=font_size)
  604. self.window.blit(bg, (0, 0))
  605. pygame.event.pump()
  606. self.clock.tick(self.metadata["render_fps"])
  607. pygame.display.flip()
  608. elif self.render_mode == "rgb_array":
  609. return img
  610. def close(self):
  611. if self.window:
  612. pygame.quit()