minigrid.py 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328
  1. import hashlib
  2. import math
  3. import string
  4. from enum import IntEnum
  5. import gym
  6. import numpy as np
  7. from gym import spaces
  8. from abc import abstractmethod
  9. # Size in pixels of a tile in the full-scale human view
  10. from gym_minigrid.rendering import (
  11. downsample,
  12. fill_coords,
  13. highlight_img,
  14. point_in_circle,
  15. point_in_line,
  16. point_in_rect,
  17. point_in_triangle,
  18. rotate_fn,
  19. )
  20. TILE_PIXELS = 32
  21. # Map of color names to RGB values
  22. COLORS = {
  23. "red": np.array([255, 0, 0]),
  24. "green": np.array([0, 255, 0]),
  25. "blue": np.array([0, 0, 255]),
  26. "purple": np.array([112, 39, 195]),
  27. "yellow": np.array([255, 255, 0]),
  28. "grey": np.array([100, 100, 100]),
  29. }
  30. COLOR_NAMES = sorted(list(COLORS.keys()))
  31. # Used to map colors to integers
  32. COLOR_TO_IDX = {"red": 0, "green": 1, "blue": 2,
  33. "purple": 3, "yellow": 4, "grey": 5}
  34. IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
  35. # Map of object type to integers
  36. OBJECT_TO_IDX = {
  37. "unseen": 0,
  38. "empty": 1,
  39. "wall": 2,
  40. "floor": 3,
  41. "door": 4,
  42. "key": 5,
  43. "ball": 6,
  44. "box": 7,
  45. "goal": 8,
  46. "lava": 9,
  47. "agent": 10,
  48. }
  49. IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
  50. # Map of state names to integers
  51. STATE_TO_IDX = {
  52. "open": 0,
  53. "closed": 1,
  54. "locked": 2,
  55. }
  56. # Map of agent direction indices to vectors
  57. DIR_TO_VEC = [
  58. # Pointing right (positive X)
  59. np.array((1, 0)),
  60. # Down (positive Y)
  61. np.array((0, 1)),
  62. # Pointing left (negative X)
  63. np.array((-1, 0)),
  64. # Up (negative Y)
  65. np.array((0, -1)),
  66. ]
  67. class WorldObj:
  68. """
  69. Base class for grid world objects
  70. """
  71. def __init__(self, type, color):
  72. assert type in OBJECT_TO_IDX, type
  73. assert color in COLOR_TO_IDX, color
  74. self.type = type
  75. self.color = color
  76. self.contains = None
  77. # Initial position of the object
  78. self.init_pos = None
  79. # Current position of the object
  80. self.cur_pos = None
  81. def can_overlap(self):
  82. """Can the agent overlap with this?"""
  83. return False
  84. def can_pickup(self):
  85. """Can the agent pick this up?"""
  86. return False
  87. def can_contain(self):
  88. """Can this contain another object?"""
  89. return False
  90. def see_behind(self):
  91. """Can the agent see behind this object?"""
  92. return True
  93. def toggle(self, env, pos):
  94. """Method to trigger/toggle an action this object performs"""
  95. return False
  96. def encode(self):
  97. """Encode the a description of this object as a 3-tuple of integers"""
  98. return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], 0)
  99. @staticmethod
  100. def decode(type_idx, color_idx, state):
  101. """Create an object from a 3-tuple state description"""
  102. obj_type = IDX_TO_OBJECT[type_idx]
  103. color = IDX_TO_COLOR[color_idx]
  104. if obj_type == "empty" or obj_type == "unseen":
  105. return None
  106. # State, 0: open, 1: closed, 2: locked
  107. is_open = state == 0
  108. is_locked = state == 2
  109. if obj_type == "wall":
  110. v = Wall(color)
  111. elif obj_type == "floor":
  112. v = Floor(color)
  113. elif obj_type == "ball":
  114. v = Ball(color)
  115. elif obj_type == "key":
  116. v = Key(color)
  117. elif obj_type == "box":
  118. v = Box(color)
  119. elif obj_type == "door":
  120. v = Door(color, is_open, is_locked)
  121. elif obj_type == "goal":
  122. v = Goal()
  123. elif obj_type == "lava":
  124. v = Lava()
  125. else:
  126. assert False, "unknown object type in decode '%s'" % obj_type
  127. return v
  128. def render(self, r):
  129. """Draw this object with the given renderer"""
  130. raise NotImplementedError
  131. class Goal(WorldObj):
  132. def __init__(self):
  133. super().__init__("goal", "green")
  134. def can_overlap(self):
  135. return True
  136. def render(self, img):
  137. fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
  138. class Floor(WorldObj):
  139. """
  140. Colored floor tile the agent can walk over
  141. """
  142. def __init__(self, color="blue"):
  143. super().__init__("floor", color)
  144. def can_overlap(self):
  145. return True
  146. def render(self, img):
  147. # Give the floor a pale color
  148. color = COLORS[self.color] / 2
  149. fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color)
  150. class Lava(WorldObj):
  151. def __init__(self):
  152. super().__init__("lava", "red")
  153. def can_overlap(self):
  154. return True
  155. def render(self, img):
  156. c = (255, 128, 0)
  157. # Background color
  158. fill_coords(img, point_in_rect(0, 1, 0, 1), c)
  159. # Little waves
  160. for i in range(3):
  161. ylo = 0.3 + 0.2 * i
  162. yhi = 0.4 + 0.2 * i
  163. fill_coords(img, point_in_line(
  164. 0.1, ylo, 0.3, yhi, r=0.03), (0, 0, 0))
  165. fill_coords(img, point_in_line(
  166. 0.3, yhi, 0.5, ylo, r=0.03), (0, 0, 0))
  167. fill_coords(img, point_in_line(
  168. 0.5, ylo, 0.7, yhi, r=0.03), (0, 0, 0))
  169. fill_coords(img, point_in_line(
  170. 0.7, yhi, 0.9, ylo, r=0.03), (0, 0, 0))
  171. class Wall(WorldObj):
  172. def __init__(self, color="grey"):
  173. super().__init__("wall", color)
  174. def see_behind(self):
  175. return False
  176. def render(self, img):
  177. fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
  178. class Door(WorldObj):
  179. def __init__(self, color, is_open=False, is_locked=False):
  180. super().__init__("door", color)
  181. self.is_open = is_open
  182. self.is_locked = is_locked
  183. def can_overlap(self):
  184. """The agent can only walk over this cell when the door is open"""
  185. return self.is_open
  186. def see_behind(self):
  187. return self.is_open
  188. def toggle(self, env, pos):
  189. # If the player has the right key to open the door
  190. if self.is_locked:
  191. if isinstance(env.carrying, Key) and env.carrying.color == self.color:
  192. self.is_locked = False
  193. self.is_open = True
  194. return True
  195. return False
  196. self.is_open = not self.is_open
  197. return True
  198. def encode(self):
  199. """Encode the a description of this object as a 3-tuple of integers"""
  200. # State, 0: open, 1: closed, 2: locked
  201. if self.is_open:
  202. state = 0
  203. elif self.is_locked:
  204. state = 2
  205. else:
  206. state = 1
  207. return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
  208. def render(self, img):
  209. c = COLORS[self.color]
  210. if self.is_open:
  211. fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c)
  212. fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0, 0, 0))
  213. return
  214. # Door frame and door
  215. if self.is_locked:
  216. fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
  217. fill_coords(img, point_in_rect(
  218. 0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c))
  219. # Draw key slot
  220. fill_coords(img, point_in_rect(0.52, 0.75, 0.50, 0.56), c)
  221. else:
  222. fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
  223. fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0, 0, 0))
  224. fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c)
  225. fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0, 0, 0))
  226. # Draw door handle
  227. fill_coords(img, point_in_circle(cx=0.75, cy=0.50, r=0.08), c)
  228. class Key(WorldObj):
  229. def __init__(self, color="blue"):
  230. super().__init__("key", color)
  231. def can_pickup(self):
  232. return True
  233. def render(self, img):
  234. c = COLORS[self.color]
  235. # Vertical quad
  236. fill_coords(img, point_in_rect(0.50, 0.63, 0.31, 0.88), c)
  237. # Teeth
  238. fill_coords(img, point_in_rect(0.38, 0.50, 0.59, 0.66), c)
  239. fill_coords(img, point_in_rect(0.38, 0.50, 0.81, 0.88), c)
  240. # Ring
  241. fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.190), c)
  242. fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.064), (0, 0, 0))
  243. class Ball(WorldObj):
  244. def __init__(self, color="blue"):
  245. super().__init__("ball", color)
  246. def can_pickup(self):
  247. return True
  248. def render(self, img):
  249. fill_coords(img, point_in_circle(0.5, 0.5, 0.31), COLORS[self.color])
  250. class Box(WorldObj):
  251. def __init__(self, color, contains=None):
  252. super().__init__("box", color)
  253. self.contains = contains
  254. def can_pickup(self):
  255. return True
  256. def set_contains(self, contains):
  257. self.contains = contains
  258. def render(self, img):
  259. c = COLORS[self.color]
  260. # Outline
  261. fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c)
  262. fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0, 0, 0))
  263. # Horizontal slit
  264. fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c)
  265. def toggle(self, env, pos):
  266. # Replace the box by its contents
  267. env.grid.set(pos[0], pos[1], self.contains)
  268. return True
  269. class Grid:
  270. """
  271. Represent a grid and operations on it
  272. """
  273. # Static cache of pre-renderer tiles
  274. tile_cache = {}
  275. def __init__(self, width, height):
  276. assert width >= 3
  277. assert height >= 3
  278. self.width = width
  279. self.height = height
  280. self.grid = [None] * width * height
  281. def __contains__(self, key):
  282. if isinstance(key, WorldObj):
  283. for e in self.grid:
  284. if e is key:
  285. return True
  286. elif isinstance(key, tuple):
  287. for e in self.grid:
  288. if e is None:
  289. continue
  290. if (e.color, e.type) == key:
  291. return True
  292. if key[0] is None and key[1] == e.type:
  293. return True
  294. return False
  295. def __eq__(self, other):
  296. grid1 = self.encode()
  297. grid2 = other.encode()
  298. return np.array_equal(grid2, grid1)
  299. def __ne__(self, other):
  300. return not self == other
  301. def copy(self):
  302. from copy import deepcopy
  303. return deepcopy(self)
  304. def set(self, i, j, v):
  305. assert i >= 0 and i < self.width
  306. assert j >= 0 and j < self.height
  307. self.grid[j * self.width + i] = v
  308. def get(self, i, j):
  309. assert i >= 0 and i < self.width
  310. assert j >= 0 and j < self.height
  311. return self.grid[j * self.width + i]
  312. def horz_wall(self, x, y, length=None, obj_type=Wall):
  313. if length is None:
  314. length = self.width - x
  315. for i in range(0, length):
  316. self.set(x + i, y, obj_type())
  317. def vert_wall(self, x, y, length=None, obj_type=Wall):
  318. if length is None:
  319. length = self.height - y
  320. for j in range(0, length):
  321. self.set(x, y + j, obj_type())
  322. def wall_rect(self, x, y, w, h):
  323. self.horz_wall(x, y, w)
  324. self.horz_wall(x, y + h - 1, w)
  325. self.vert_wall(x, y, h)
  326. self.vert_wall(x + w - 1, y, h)
  327. def rotate_left(self):
  328. """
  329. Rotate the grid to the left (counter-clockwise)
  330. """
  331. grid = Grid(self.height, self.width)
  332. for i in range(self.width):
  333. for j in range(self.height):
  334. v = self.get(i, j)
  335. grid.set(j, grid.height - 1 - i, v)
  336. return grid
  337. def slice(self, topX, topY, width, height):
  338. """
  339. Get a subset of the grid
  340. """
  341. grid = Grid(width, height)
  342. for j in range(0, height):
  343. for i in range(0, width):
  344. x = topX + i
  345. y = topY + j
  346. if x >= 0 and x < self.width and y >= 0 and y < self.height:
  347. v = self.get(x, y)
  348. else:
  349. v = Wall()
  350. grid.set(i, j, v)
  351. return grid
  352. @classmethod
  353. def render_tile(
  354. cls, obj, agent_dir=None, highlight=False, tile_size=TILE_PIXELS, subdivs=3
  355. ):
  356. """
  357. Render a tile and cache the result
  358. """
  359. # Hash map lookup key for the cache
  360. key = (agent_dir, highlight, tile_size)
  361. key = obj.encode() + key if obj else key
  362. if key in cls.tile_cache:
  363. return cls.tile_cache[key]
  364. img = np.zeros(
  365. shape=(tile_size * subdivs, tile_size * subdivs, 3), dtype=np.uint8
  366. )
  367. # Draw the grid lines (top and left edges)
  368. fill_coords(img, point_in_rect(0, 0.031, 0, 1), (100, 100, 100))
  369. fill_coords(img, point_in_rect(0, 1, 0, 0.031), (100, 100, 100))
  370. if obj is not None:
  371. obj.render(img)
  372. # Overlay the agent on top
  373. if agent_dir is not None:
  374. tri_fn = point_in_triangle(
  375. (0.12, 0.19),
  376. (0.87, 0.50),
  377. (0.12, 0.81),
  378. )
  379. # Rotate the agent based on its direction
  380. tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5,
  381. theta=0.5 * math.pi * agent_dir)
  382. fill_coords(img, tri_fn, (255, 0, 0))
  383. # Highlight the cell if needed
  384. if highlight:
  385. highlight_img(img)
  386. # Downsample the image to perform supersampling/anti-aliasing
  387. img = downsample(img, subdivs)
  388. # Cache the rendered tile
  389. cls.tile_cache[key] = img
  390. return img
  391. def render(self, tile_size, agent_pos, agent_dir=None, highlight_mask=None):
  392. """
  393. Render this grid at a given scale
  394. :param r: target renderer object
  395. :param tile_size: tile size in pixels
  396. """
  397. if highlight_mask is None:
  398. highlight_mask = np.zeros(
  399. shape=(self.width, self.height), dtype=bool)
  400. # Compute the total grid size
  401. width_px = self.width * tile_size
  402. height_px = self.height * tile_size
  403. img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8)
  404. # Render the grid
  405. for j in range(0, self.height):
  406. for i in range(0, self.width):
  407. cell = self.get(i, j)
  408. agent_here = np.array_equal(agent_pos, (i, j))
  409. tile_img = Grid.render_tile(
  410. cell,
  411. agent_dir=agent_dir if agent_here else None,
  412. highlight=highlight_mask[i, j],
  413. tile_size=tile_size,
  414. )
  415. ymin = j * tile_size
  416. ymax = (j + 1) * tile_size
  417. xmin = i * tile_size
  418. xmax = (i + 1) * tile_size
  419. img[ymin:ymax, xmin:xmax, :] = tile_img
  420. return img
  421. def encode(self, vis_mask=None):
  422. """
  423. Produce a compact numpy encoding of the grid
  424. """
  425. if vis_mask is None:
  426. vis_mask = np.ones((self.width, self.height), dtype=bool)
  427. array = np.zeros((self.width, self.height, 3), dtype="uint8")
  428. for i in range(self.width):
  429. for j in range(self.height):
  430. if vis_mask[i, j]:
  431. v = self.get(i, j)
  432. if v is None:
  433. array[i, j, 0] = OBJECT_TO_IDX["empty"]
  434. array[i, j, 1] = 0
  435. array[i, j, 2] = 0
  436. else:
  437. array[i, j, :] = v.encode()
  438. return array
  439. @staticmethod
  440. def decode(array):
  441. """
  442. Decode an array grid encoding back into a grid
  443. """
  444. width, height, channels = array.shape
  445. assert channels == 3
  446. vis_mask = np.ones(shape=(width, height), dtype=bool)
  447. grid = Grid(width, height)
  448. for i in range(width):
  449. for j in range(height):
  450. type_idx, color_idx, state = array[i, j]
  451. v = WorldObj.decode(type_idx, color_idx, state)
  452. grid.set(i, j, v)
  453. vis_mask[i, j] = type_idx != OBJECT_TO_IDX["unseen"]
  454. return grid, vis_mask
  455. def process_vis(self, agent_pos):
  456. mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  457. mask[agent_pos[0], agent_pos[1]] = True
  458. for j in reversed(range(0, self.height)):
  459. for i in range(0, self.width - 1):
  460. if not mask[i, j]:
  461. continue
  462. cell = self.get(i, j)
  463. if cell and not cell.see_behind():
  464. continue
  465. mask[i + 1, j] = True
  466. if j > 0:
  467. mask[i + 1, j - 1] = True
  468. mask[i, j - 1] = True
  469. for i in reversed(range(1, self.width)):
  470. if not mask[i, j]:
  471. continue
  472. cell = self.get(i, j)
  473. if cell and not cell.see_behind():
  474. continue
  475. mask[i - 1, j] = True
  476. if j > 0:
  477. mask[i - 1, j - 1] = True
  478. mask[i, j - 1] = True
  479. for j in range(0, self.height):
  480. for i in range(0, self.width):
  481. if not mask[i, j]:
  482. self.set(i, j, None)
  483. return mask
  484. class MiniGridEnv(gym.Env):
  485. """
  486. 2D grid world game environment
  487. """
  488. metadata = {
  489. # Deprecated: use 'render_modes' instead
  490. "render.modes": ["human", "rgb_array"],
  491. "video.frames_per_second": 10, # Deprecated: use 'render_fps' instead
  492. "render_modes": ["human", "rgb_array"],
  493. "render_fps": 10,
  494. }
  495. # Enumeration of possible actions
  496. class Actions(IntEnum):
  497. # Turn left, turn right, move forward
  498. left = 0
  499. right = 1
  500. forward = 2
  501. # Pick up an object
  502. pickup = 3
  503. # Drop an object
  504. drop = 4
  505. # Toggle/activate an object
  506. toggle = 5
  507. # Done completing task
  508. done = 6
  509. def __init__(
  510. self,
  511. grid_size=None,
  512. width=None,
  513. height=None,
  514. max_steps=100,
  515. see_through_walls=False,
  516. agent_view_size=7,
  517. render_mode=None,
  518. **kwargs
  519. ):
  520. # Can't set both grid_size and width/height
  521. if grid_size:
  522. assert width is None and height is None
  523. width = grid_size
  524. height = grid_size
  525. # Action enumeration for this environment
  526. self.actions = MiniGridEnv.Actions
  527. # Actions are discrete integer values
  528. self.action_space = spaces.Discrete(len(self.actions))
  529. # Number of cells (width and height) in the agent view
  530. assert agent_view_size % 2 == 1
  531. assert agent_view_size >= 3
  532. self.agent_view_size = agent_view_size
  533. # Observations are dictionaries containing an
  534. # encoding of the grid and a textual 'mission' string
  535. self.observation_space = spaces.Box(
  536. low=0,
  537. high=255,
  538. shape=(self.agent_view_size, self.agent_view_size, 3),
  539. dtype="uint8",
  540. )
  541. self.observation_space = spaces.Dict(
  542. {
  543. "image": self.observation_space,
  544. "direction": spaces.Discrete(4),
  545. "mission": spaces.Text(
  546. max_length=200,
  547. charset=string.ascii_letters + string.digits + " .,!-",
  548. ),
  549. }
  550. )
  551. # render mode
  552. self.render_mode = render_mode
  553. # Range of possible rewards
  554. self.reward_range = (0, 1)
  555. # Window to use for human rendering mode
  556. self.window = None
  557. # Environment configuration
  558. self.width = width
  559. self.height = height
  560. self.max_steps = max_steps
  561. self.see_through_walls = see_through_walls
  562. # Current position and direction of the agent
  563. self.agent_pos = (-1, -1)
  564. self.agent_dir = -1
  565. # Current grid and mission and carryinh
  566. self.grid = Grid(width, height)
  567. self.mission = ""
  568. self.carrying = None
  569. # Initialize the state
  570. self.reset()
  571. def reset(self, *, seed=None, return_info=False, options=None):
  572. super().reset(seed=seed)
  573. # Reinitialize episode-specific variables
  574. self.agent_pos = (-1, -1)
  575. self.agent_dir = -1
  576. # Generate a new random grid at the start of each episode
  577. self._gen_grid(self.width, self.height)
  578. # These fields should be defined by _gen_grid
  579. assert self.agent_pos >= (0, 0) and self.agent_dir >= 0
  580. # Check that the agent doesn't overlap with an object
  581. start_cell = self.grid.get(*self.agent_pos)
  582. assert start_cell is None or start_cell.can_overlap()
  583. # Item picked up, being carried, initially nothing
  584. self.carrying = None
  585. # Step count since episode start
  586. self.step_count = 0
  587. # Return first observation
  588. obs = self.gen_obs()
  589. return obs
  590. def hash(self, size=16):
  591. """Compute a hash that uniquely identifies the current state of the environment.
  592. :param size: Size of the hashing
  593. """
  594. sample_hash = hashlib.sha256()
  595. to_encode = [self.grid.encode().tolist(), self.agent_pos,
  596. self.agent_dir]
  597. for item in to_encode:
  598. sample_hash.update(str(item).encode("utf8"))
  599. return sample_hash.hexdigest()[:size]
  600. @property
  601. def steps_remaining(self):
  602. return self.max_steps - self.step_count
  603. def __str__(self):
  604. """
  605. Produce a pretty string of the environment's grid along with the agent.
  606. A grid cell is represented by 2-character string, the first one for
  607. the object and the second one for the color.
  608. """
  609. # Map of object types to short string
  610. OBJECT_TO_STR = {
  611. "wall": "W",
  612. "floor": "F",
  613. "door": "D",
  614. "key": "K",
  615. "ball": "A",
  616. "box": "B",
  617. "goal": "G",
  618. "lava": "V",
  619. }
  620. # Map agent's direction to short string
  621. AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
  622. str = ""
  623. for j in range(self.grid.height):
  624. for i in range(self.grid.width):
  625. if i == self.agent_pos[0] and j == self.agent_pos[1]:
  626. str += 2 * AGENT_DIR_TO_STR[self.agent_dir]
  627. continue
  628. c = self.grid.get(i, j)
  629. if c is None:
  630. str += " "
  631. continue
  632. if c.type == "door":
  633. if c.is_open:
  634. str += "__"
  635. elif c.is_locked:
  636. str += "L" + c.color[0].upper()
  637. else:
  638. str += "D" + c.color[0].upper()
  639. continue
  640. str += OBJECT_TO_STR[c.type] + c.color[0].upper()
  641. if j < self.grid.height - 1:
  642. str += "\n"
  643. return str
  644. @abstractmethod
  645. def _gen_grid(self, width, height):
  646. pass
  647. def _reward(self):
  648. """
  649. Compute the reward to be given upon success
  650. """
  651. return 1 - 0.9 * (self.step_count / self.max_steps)
  652. def _rand_int(self, low, high):
  653. """
  654. Generate random integer in [low,high[
  655. """
  656. return self.np_random.integers(low, high)
  657. def _rand_float(self, low, high):
  658. """
  659. Generate random float in [low,high[
  660. """
  661. return self.np_random.uniform(low, high)
  662. def _rand_bool(self):
  663. """
  664. Generate random boolean value
  665. """
  666. return self.np_random.integers(0, 2) == 0
  667. def _rand_elem(self, iterable):
  668. """
  669. Pick a random element in a list
  670. """
  671. lst = list(iterable)
  672. idx = self._rand_int(0, len(lst))
  673. return lst[idx]
  674. def _rand_subset(self, iterable, num_elems):
  675. """
  676. Sample a random subset of distinct elements of a list
  677. """
  678. lst = list(iterable)
  679. assert num_elems <= len(lst)
  680. out = []
  681. while len(out) < num_elems:
  682. elem = self._rand_elem(lst)
  683. lst.remove(elem)
  684. out.append(elem)
  685. return out
  686. def _rand_color(self):
  687. """
  688. Generate a random color name (string)
  689. """
  690. return self._rand_elem(COLOR_NAMES)
  691. def _rand_pos(self, xLow, xHigh, yLow, yHigh):
  692. """
  693. Generate a random (x,y) position tuple
  694. """
  695. return (
  696. self.np_random.integers(xLow, xHigh),
  697. self.np_random.integers(yLow, yHigh),
  698. )
  699. def place_obj(self, obj, top=None, size=None, reject_fn=None, max_tries=math.inf):
  700. """
  701. Place an object at an empty position in the grid
  702. :param top: top-left position of the rectangle where to place
  703. :param size: size of the rectangle where to place
  704. :param reject_fn: function to filter out potential positions
  705. """
  706. if top is None:
  707. top = (0, 0)
  708. else:
  709. top = (max(top[0], 0), max(top[1], 0))
  710. if size is None:
  711. size = (self.grid.width, self.grid.height)
  712. num_tries = 0
  713. while True:
  714. # This is to handle with rare cases where rejection sampling
  715. # gets stuck in an infinite loop
  716. if num_tries > max_tries:
  717. raise RecursionError("rejection sampling failed in place_obj")
  718. num_tries += 1
  719. pos = np.array(
  720. (
  721. self._rand_int(top[0], min(
  722. top[0] + size[0], self.grid.width)),
  723. self._rand_int(top[1], min(
  724. top[1] + size[1], self.grid.height)),
  725. )
  726. )
  727. pos = tuple(pos)
  728. # Don't place the object on top of another object
  729. if self.grid.get(*pos) is not None:
  730. continue
  731. # Don't place the object where the agent is
  732. if np.array_equal(pos, self.agent_pos):
  733. continue
  734. # Check if there is a filtering criterion
  735. if reject_fn and reject_fn(self, pos):
  736. continue
  737. break
  738. self.grid.set(pos[0], pos[1], obj)
  739. if obj is not None:
  740. obj.init_pos = pos
  741. obj.cur_pos = pos
  742. return pos
  743. def put_obj(self, obj, i, j):
  744. """
  745. Put an object at a specific position in the grid
  746. """
  747. self.grid.set(i, j, obj)
  748. obj.init_pos = (i, j)
  749. obj.cur_pos = (i, j)
  750. def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf):
  751. """
  752. Set the agent's starting point at an empty position in the grid
  753. """
  754. self.agent_pos = (-1, -1)
  755. pos = self.place_obj(None, top, size, max_tries=max_tries)
  756. self.agent_pos = pos
  757. if rand_dir:
  758. self.agent_dir = self._rand_int(0, 4)
  759. return pos
  760. @property
  761. def dir_vec(self):
  762. """
  763. Get the direction vector for the agent, pointing in the direction
  764. of forward movement.
  765. """
  766. assert self.agent_dir >= 0 and self.agent_dir < 4
  767. return DIR_TO_VEC[self.agent_dir]
  768. @property
  769. def right_vec(self):
  770. """
  771. Get the vector pointing to the right of the agent.
  772. """
  773. dx, dy = self.dir_vec
  774. return np.array((-dy, dx))
  775. @property
  776. def front_pos(self):
  777. """
  778. Get the position of the cell that is right in front of the agent
  779. """
  780. return self.agent_pos + self.dir_vec
  781. def get_view_coords(self, i, j):
  782. """
  783. Translate and rotate absolute grid coordinates (i, j) into the
  784. agent's partially observable view (sub-grid). Note that the resulting
  785. coordinates may be negative or outside of the agent's view size.
  786. """
  787. ax, ay = self.agent_pos
  788. dx, dy = self.dir_vec
  789. rx, ry = self.right_vec
  790. # Compute the absolute coordinates of the top-left view corner
  791. sz = self.agent_view_size
  792. hs = self.agent_view_size // 2
  793. tx = ax + (dx * (sz - 1)) - (rx * hs)
  794. ty = ay + (dy * (sz - 1)) - (ry * hs)
  795. lx = i - tx
  796. ly = j - ty
  797. # Project the coordinates of the object relative to the top-left
  798. # corner onto the agent's own coordinate system
  799. vx = rx * lx + ry * ly
  800. vy = -(dx * lx + dy * ly)
  801. return vx, vy
  802. def get_view_exts(self, agent_view_size=None):
  803. """
  804. Get the extents of the square set of tiles visible to the agent
  805. Note: the bottom extent indices are not included in the set
  806. if agent_view_size is None, use self.agent_view_size
  807. """
  808. agent_view_size = agent_view_size or self.agent_view_size
  809. # Facing right
  810. if self.agent_dir == 0:
  811. topX = self.agent_pos[0]
  812. topY = self.agent_pos[1] - agent_view_size // 2
  813. # Facing down
  814. elif self.agent_dir == 1:
  815. topX = self.agent_pos[0] - agent_view_size // 2
  816. topY = self.agent_pos[1]
  817. # Facing left
  818. elif self.agent_dir == 2:
  819. topX = self.agent_pos[0] - agent_view_size + 1
  820. topY = self.agent_pos[1] - agent_view_size // 2
  821. # Facing up
  822. elif self.agent_dir == 3:
  823. topX = self.agent_pos[0] - agent_view_size // 2
  824. topY = self.agent_pos[1] - agent_view_size + 1
  825. else:
  826. assert False, "invalid agent direction"
  827. botX = topX + agent_view_size
  828. botY = topY + agent_view_size
  829. return (topX, topY, botX, botY)
  830. def relative_coords(self, x, y):
  831. """
  832. Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates
  833. """
  834. vx, vy = self.get_view_coords(x, y)
  835. if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size:
  836. return None
  837. return vx, vy
  838. def in_view(self, x, y):
  839. """
  840. check if a grid position is visible to the agent
  841. """
  842. return self.relative_coords(x, y) is not None
  843. def agent_sees(self, x, y):
  844. """
  845. Check if a non-empty grid position is visible to the agent
  846. """
  847. coordinates = self.relative_coords(x, y)
  848. if coordinates is None:
  849. return False
  850. vx, vy = coordinates
  851. obs = self.gen_obs()
  852. obs_grid, _ = Grid.decode(obs["image"])
  853. obs_cell = obs_grid.get(vx, vy)
  854. world_cell = self.grid.get(x, y)
  855. assert world_cell is not None
  856. return obs_cell is not None and obs_cell.type == world_cell.type
  857. def step(self, action):
  858. self.step_count += 1
  859. reward = 0
  860. terminated = False
  861. truncated = False
  862. # Get the position in front of the agent
  863. fwd_pos = self.front_pos
  864. # Get the contents of the cell in front of the agent
  865. fwd_cell = self.grid.get(*fwd_pos)
  866. # Rotate left
  867. if action == self.actions.left:
  868. self.agent_dir -= 1
  869. if self.agent_dir < 0:
  870. self.agent_dir += 4
  871. # Rotate right
  872. elif action == self.actions.right:
  873. self.agent_dir = (self.agent_dir + 1) % 4
  874. # Move forward
  875. elif action == self.actions.forward:
  876. if fwd_cell is None or fwd_cell.can_overlap():
  877. self.agent_pos = tuple(fwd_pos)
  878. if fwd_cell is not None and fwd_cell.type == "goal":
  879. terminated = True
  880. reward = self._reward()
  881. if fwd_cell is not None and fwd_cell.type == "lava":
  882. terminated = True
  883. # Pick up an object
  884. elif action == self.actions.pickup:
  885. if fwd_cell and fwd_cell.can_pickup():
  886. if self.carrying is None:
  887. self.carrying = fwd_cell
  888. self.carrying.cur_pos = np.array([-1, -1])
  889. self.grid.set(fwd_pos[0], fwd_pos[1], None)
  890. # Drop an object
  891. elif action == self.actions.drop:
  892. if not fwd_cell and self.carrying:
  893. self.grid.set(fwd_pos[0], fwd_pos[1], self.carrying)
  894. self.carrying.cur_pos = fwd_pos
  895. self.carrying = None
  896. # Toggle/activate an object
  897. elif action == self.actions.toggle:
  898. if fwd_cell:
  899. fwd_cell.toggle(self, fwd_pos)
  900. # Done action (not used by default)
  901. elif action == self.actions.done:
  902. pass
  903. else:
  904. raise ValueError('Unknown action: {}'.format(action))
  905. if self.step_count >= self.max_steps:
  906. truncated = True
  907. obs = self.gen_obs()
  908. return obs, reward, terminated, truncated, {}
  909. def gen_obs_grid(self, agent_view_size=None):
  910. """
  911. Generate the sub-grid observed by the agent.
  912. This method also outputs a visibility mask telling us which grid
  913. cells the agent can actually see.
  914. if agent_view_size is None, self.agent_view_size is used
  915. """
  916. topX, topY, botX, botY = self.get_view_exts(agent_view_size)
  917. agent_view_size = agent_view_size or self.agent_view_size
  918. grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size)
  919. for i in range(self.agent_dir + 1):
  920. grid = grid.rotate_left()
  921. # Process occluders and visibility
  922. # Note that this incurs some performance cost
  923. if not self.see_through_walls:
  924. vis_mask = grid.process_vis(
  925. agent_pos=(agent_view_size // 2, agent_view_size - 1)
  926. )
  927. else:
  928. vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool)
  929. # Make it so the agent sees what it's carrying
  930. # We do this by placing the carried object at the agent's position
  931. # in the agent's partially observable view
  932. agent_pos = grid.width // 2, grid.height - 1
  933. if self.carrying:
  934. grid.set(*agent_pos, self.carrying)
  935. else:
  936. grid.set(*agent_pos, None)
  937. return grid, vis_mask
  938. def gen_obs(self):
  939. """
  940. Generate the agent's view (partially observable, low-resolution encoding)
  941. """
  942. grid, vis_mask = self.gen_obs_grid()
  943. # Encode the partially observable view into a numpy array
  944. image = grid.encode(vis_mask)
  945. # Observations are dictionaries containing:
  946. # - an image (partially observable view of the environment)
  947. # - the agent's direction/orientation (acting as a compass)
  948. # - a textual mission string (instructions for the agent)
  949. obs = {"image": image, "direction": self.agent_dir,
  950. "mission": self.mission}
  951. return obs
  952. def get_obs_render(self, obs, tile_size=TILE_PIXELS // 2):
  953. """
  954. Render an agent observation for visualization
  955. """
  956. grid, vis_mask = Grid.decode(obs)
  957. # Render the whole grid
  958. img = grid.render(
  959. tile_size,
  960. agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1),
  961. agent_dir=3,
  962. highlight_mask=vis_mask,
  963. )
  964. return img
  965. def render(self, mode="human", close=False, highlight=True, tile_size=TILE_PIXELS):
  966. """
  967. Render the whole-grid human view
  968. """
  969. if self.render_mode is not None:
  970. mode = self.render_mode
  971. if close:
  972. if self.window:
  973. self.window.close()
  974. return
  975. if mode == "human" and not self.window:
  976. import gym_minigrid.window
  977. self.window = gym_minigrid.window.Window("gym_minigrid")
  978. self.window.show(block=False)
  979. # Compute which cells are visible to the agent
  980. _, vis_mask = self.gen_obs_grid()
  981. # Compute the world coordinates of the bottom-left corner
  982. # of the agent's view area
  983. f_vec = self.dir_vec
  984. r_vec = self.right_vec
  985. top_left = (
  986. self.agent_pos
  987. + f_vec * (self.agent_view_size - 1)
  988. - r_vec * (self.agent_view_size // 2)
  989. )
  990. # Mask of which cells to highlight
  991. highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  992. # For each cell in the visibility mask
  993. for vis_j in range(0, self.agent_view_size):
  994. for vis_i in range(0, self.agent_view_size):
  995. # If this cell is not visible, don't highlight it
  996. if not vis_mask[vis_i, vis_j]:
  997. continue
  998. # Compute the world coordinates of this cell
  999. abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i)
  1000. if abs_i < 0 or abs_i >= self.width:
  1001. continue
  1002. if abs_j < 0 or abs_j >= self.height:
  1003. continue
  1004. # Mark this cell to be highlighted
  1005. highlight_mask[abs_i, abs_j] = True
  1006. # Render the whole grid
  1007. img = self.grid.render(
  1008. tile_size,
  1009. self.agent_pos,
  1010. self.agent_dir,
  1011. highlight_mask=highlight_mask if highlight else None,
  1012. )
  1013. if mode == "human":
  1014. assert self.window is not None
  1015. self.window.set_caption(self.mission)
  1016. self.window.show_img(img)
  1017. return img
  1018. def close(self):
  1019. if self.window:
  1020. self.window.close()
  1021. return