123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- from typing import Optional
- from minigrid.core.constants import COLOR_NAMES
- from minigrid.core.grid import Grid
- from minigrid.core.mission import MissionSpace
- from minigrid.core.world_object import Door, Goal, Wall
- from minigrid.minigrid_env import MiniGridEnv
- class MultiRoom:
- def __init__(self, top, size, entryDoorPos, exitDoorPos):
- self.top = top
- self.size = size
- self.entryDoorPos = entryDoorPos
- self.exitDoorPos = exitDoorPos
- class MultiRoomEnv(MiniGridEnv):
- """
- ## Description
- This environment has a series of connected rooms with doors that must be
- opened in order to get to the next room. The final room has the green goal
- square the agent must get to. This environment is extremely difficult to
- solve using RL alone. However, by gradually increasing the number of rooms
- and building a curriculum, the environment can be solved.
- ## Mission Space
- "traverse the rooms to get to the goal"
- ## Action Space
- | Num | Name | Action |
- |-----|--------------|---------------------------|
- | 0 | left | Turn left |
- | 1 | right | Turn right |
- | 2 | forward | Move forward |
- | 3 | pickup | Unused |
- | 4 | drop | Unused |
- | 5 | toggle | Toggle/activate an object |
- | 6 | done | Unused |
- ## Observation Encoding
- - Each tile is encoded as a 3 dimensional tuple:
- `(OBJECT_IDX, COLOR_IDX, STATE)`
- - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
- [minigrid/minigrid.py](minigrid/minigrid.py)
- - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
- ## Rewards
- A reward of '1' is given for success, and '0' for failure.
- ## Termination
- The episode ends if any one of the following conditions is met:
- 1. The agent reaches the goal.
- 2. Timeout (see `max_steps`).
- ## Registered Configurations
- S: size of map SxS.
- N: number of rooms.
- - `MiniGrid-MultiRoom-N2-S4-v0` (two small rooms)
- - `MiniGrid-MultiRoom-N4-S5-v0` (four rooms)
- - `MiniGrid-MultiRoom-N6-v0` (six rooms)
- """
- def __init__(
- self,
- minNumRooms,
- maxNumRooms,
- maxRoomSize=10,
- max_steps: Optional[int] = None,
- **kwargs
- ):
- assert minNumRooms > 0
- assert maxNumRooms >= minNumRooms
- assert maxRoomSize >= 4
- self.minNumRooms = minNumRooms
- self.maxNumRooms = maxNumRooms
- self.maxRoomSize = maxRoomSize
- self.rooms = []
- mission_space = MissionSpace(mission_func=self._gen_mission)
- self.size = 25
- if max_steps is None:
- max_steps = maxNumRooms * 20
- super().__init__(
- mission_space=mission_space,
- width=self.size,
- height=self.size,
- max_steps=max_steps,
- **kwargs
- )
- @staticmethod
- def _gen_mission():
- return "traverse the rooms to get to the goal"
- def _gen_grid(self, width, height):
- roomList = []
- # Choose a random number of rooms to generate
- numRooms = self._rand_int(self.minNumRooms, self.maxNumRooms + 1)
- while len(roomList) < numRooms:
- curRoomList = []
- entryDoorPos = (self._rand_int(0, width - 2), self._rand_int(0, width - 2))
- # Recursively place the rooms
- self._placeRoom(
- numRooms,
- roomList=curRoomList,
- minSz=4,
- maxSz=self.maxRoomSize,
- entryDoorWall=2,
- entryDoorPos=entryDoorPos,
- )
- if len(curRoomList) > len(roomList):
- roomList = curRoomList
- # Store the list of rooms in this environment
- assert len(roomList) > 0
- self.rooms = roomList
- # Create the grid
- self.grid = Grid(width, height)
- wall = Wall()
- prevDoorColor = None
- # For each room
- for idx, room in enumerate(roomList):
- topX, topY = room.top
- sizeX, sizeY = room.size
- # Draw the top and bottom walls
- for i in range(0, sizeX):
- self.grid.set(topX + i, topY, wall)
- self.grid.set(topX + i, topY + sizeY - 1, wall)
- # Draw the left and right walls
- for j in range(0, sizeY):
- self.grid.set(topX, topY + j, wall)
- self.grid.set(topX + sizeX - 1, topY + j, wall)
- # If this isn't the first room, place the entry door
- if idx > 0:
- # Pick a door color different from the previous one
- doorColors = set(COLOR_NAMES)
- if prevDoorColor:
- doorColors.remove(prevDoorColor)
- # Note: the use of sorting here guarantees determinism,
- # This is needed because Python's set is not deterministic
- doorColor = self._rand_elem(sorted(doorColors))
- entryDoor = Door(doorColor)
- self.grid.set(room.entryDoorPos[0], room.entryDoorPos[1], entryDoor)
- prevDoorColor = doorColor
- prevRoom = roomList[idx - 1]
- prevRoom.exitDoorPos = room.entryDoorPos
- # Randomize the starting agent position and direction
- self.place_agent(roomList[0].top, roomList[0].size)
- # Place the final goal in the last room
- self.goal_pos = self.place_obj(Goal(), roomList[-1].top, roomList[-1].size)
- self.mission = "traverse the rooms to get to the goal"
- def _placeRoom(self, numLeft, roomList, minSz, maxSz, entryDoorWall, entryDoorPos):
- # Choose the room size randomly
- sizeX = self._rand_int(minSz, maxSz + 1)
- sizeY = self._rand_int(minSz, maxSz + 1)
- # The first room will be at the door position
- if len(roomList) == 0:
- topX, topY = entryDoorPos
- # Entry on the right
- elif entryDoorWall == 0:
- topX = entryDoorPos[0] - sizeX + 1
- y = entryDoorPos[1]
- topY = self._rand_int(y - sizeY + 2, y)
- # Entry wall on the south
- elif entryDoorWall == 1:
- x = entryDoorPos[0]
- topX = self._rand_int(x - sizeX + 2, x)
- topY = entryDoorPos[1] - sizeY + 1
- # Entry wall on the left
- elif entryDoorWall == 2:
- topX = entryDoorPos[0]
- y = entryDoorPos[1]
- topY = self._rand_int(y - sizeY + 2, y)
- # Entry wall on the top
- elif entryDoorWall == 3:
- x = entryDoorPos[0]
- topX = self._rand_int(x - sizeX + 2, x)
- topY = entryDoorPos[1]
- else:
- assert False, entryDoorWall
- # If the room is out of the grid, can't place a room here
- if topX < 0 or topY < 0:
- return False
- if topX + sizeX > self.width or topY + sizeY >= self.height:
- return False
- # If the room intersects with previous rooms, can't place it here
- for room in roomList[:-1]:
- nonOverlap = (
- topX + sizeX < room.top[0]
- or room.top[0] + room.size[0] <= topX
- or topY + sizeY < room.top[1]
- or room.top[1] + room.size[1] <= topY
- )
- if not nonOverlap:
- return False
- # Add this room to the list
- roomList.append(MultiRoom((topX, topY), (sizeX, sizeY), entryDoorPos, None))
- # If this was the last room, stop
- if numLeft == 1:
- return True
- # Try placing the next room
- for i in range(0, 8):
- # Pick which wall to place the out door on
- wallSet = {0, 1, 2, 3}
- wallSet.remove(entryDoorWall)
- exitDoorWall = self._rand_elem(sorted(wallSet))
- nextEntryWall = (exitDoorWall + 2) % 4
- # Pick the exit door position
- # Exit on right wall
- if exitDoorWall == 0:
- exitDoorPos = (topX + sizeX - 1, topY + self._rand_int(1, sizeY - 1))
- # Exit on south wall
- elif exitDoorWall == 1:
- exitDoorPos = (topX + self._rand_int(1, sizeX - 1), topY + sizeY - 1)
- # Exit on left wall
- elif exitDoorWall == 2:
- exitDoorPos = (topX, topY + self._rand_int(1, sizeY - 1))
- # Exit on north wall
- elif exitDoorWall == 3:
- exitDoorPos = (topX + self._rand_int(1, sizeX - 1), topY)
- else:
- assert False
- # Recursively create the other rooms
- success = self._placeRoom(
- numLeft - 1,
- roomList=roomList,
- minSz=minSz,
- maxSz=maxSz,
- entryDoorWall=nextEntryWall,
- entryDoorPos=exitDoorPos,
- )
- if success:
- break
- return True
|