123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245 |
- import math
- import gym
- from enum import IntEnum
- import numpy as np
- from gym import error, spaces, utils
- from gym.utils import seeding
- from gym_minigrid.rendering import *
- # Size in pixels of a cell in the full-scale human view
- CELL_PIXELS = 32
- # Number of cells (width and height) in the agent view
- AGENT_VIEW_SIZE = 7
- # Size of the array given as an observation to the agent
- OBS_ARRAY_SIZE = (AGENT_VIEW_SIZE, AGENT_VIEW_SIZE, 3)
- # Map of color names to RGB values
- COLORS = {
- 'red' : (255, 0, 0),
- 'green' : (0, 255, 0),
- 'blue' : (0, 0, 255),
- 'purple': (112, 39, 195),
- 'yellow': (255, 255, 0),
- 'grey' : (100, 100, 100)
- }
- COLOR_NAMES = sorted(list(COLORS.keys()))
- # Used to map colors to integers
- COLOR_TO_IDX = {
- 'red' : 0,
- 'green' : 1,
- 'blue' : 2,
- 'purple': 3,
- 'yellow': 4,
- 'grey' : 5
- }
- IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
- # Map of object type to integers
- OBJECT_TO_IDX = {
- 'empty' : 0,
- 'wall' : 1,
- 'door' : 2,
- 'locked_door' : 3,
- 'key' : 4,
- 'ball' : 5,
- 'box' : 6,
- 'goal' : 7
- }
- IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
- # Map of agent direction indices to vectors
- DIR_TO_VEC = [
- # Pointing right (positive X)
- np.array((1, 0)),
- # Down (positive Y)
- np.array((0, 1)),
- # Pointing left (negative X)
- np.array((-1, 0)),
- # Up (negative Y)
- np.array((0, -1)),
- ]
- class WorldObj:
- """
- Base class for grid world objects
- """
- def __init__(self, type, color):
- assert type in OBJECT_TO_IDX, type
- assert color in COLOR_TO_IDX, color
- self.type = type
- self.color = color
- self.contains = None
- def can_overlap(self):
- """Can the agent overlap with this?"""
- return False
- def can_pickup(self):
- """Can the agent pick this up?"""
- return False
- def can_contain(self):
- """Can this contain another object?"""
- return False
- def see_behind(self):
- """Can the agent see behind this object?"""
- return True
- def toggle(self, env, pos):
- """Method to trigger/toggle an action this object performs"""
- return False
- def render(self, r):
- """Draw this object with the given renderer"""
- raise NotImplementedError
- def _set_color(self, r):
- """Set the color of this object as the active drawing color"""
- c = COLORS[self.color]
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(c[0], c[1], c[2])
- class Goal(WorldObj):
- def __init__(self):
- super(Goal, self).__init__('goal', 'green')
- def can_overlap(self):
- return True
- def render(self, r):
- self._set_color(r)
- r.drawPolygon([
- (0 , CELL_PIXELS),
- (CELL_PIXELS, CELL_PIXELS),
- (CELL_PIXELS, 0),
- (0 , 0)
- ])
- class Wall(WorldObj):
- def __init__(self, color='grey'):
- super(Wall, self).__init__('wall', color)
- def see_behind(self):
- return False
- def render(self, r):
- self._set_color(r)
- r.drawPolygon([
- (0 , CELL_PIXELS),
- (CELL_PIXELS, CELL_PIXELS),
- (CELL_PIXELS, 0),
- (0 , 0)
- ])
- class Door(WorldObj):
- def __init__(self, color, is_open=False):
- super(Door, self).__init__('door', color)
- self.is_open = is_open
- def can_overlap(self):
- """The agent can only walk over this cell when the door is open"""
- return self.is_open
- def see_behind(self):
- return self.is_open
- def toggle(self, env, pos):
- if not self.is_open:
- self.is_open = True
- return True
- return False
- def render(self, r):
- c = COLORS[self.color]
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(0, 0, 0)
- if self.is_open:
- r.drawPolygon([
- (CELL_PIXELS-2, CELL_PIXELS),
- (CELL_PIXELS , CELL_PIXELS),
- (CELL_PIXELS , 0),
- (CELL_PIXELS-2, 0)
- ])
- return
- r.drawPolygon([
- (0 , CELL_PIXELS),
- (CELL_PIXELS, CELL_PIXELS),
- (CELL_PIXELS, 0),
- (0 , 0)
- ])
- r.drawPolygon([
- (2 , CELL_PIXELS-2),
- (CELL_PIXELS-2, CELL_PIXELS-2),
- (CELL_PIXELS-2, 2),
- (2 , 2)
- ])
- r.drawCircle(CELL_PIXELS * 0.75, CELL_PIXELS * 0.5, 2)
- class LockedDoor(WorldObj):
- def __init__(self, color, is_open=False):
- super(LockedDoor, self).__init__('locked_door', color)
- self.is_open = is_open
- def toggle(self, env, pos):
- # If the player has the right key to open the door
- if isinstance(env.carrying, Key) and env.carrying.color == self.color:
- self.is_open = True
- # The key has been used, remove it from the agent
- env.carrying = None
- return True
- return False
- def can_overlap(self):
- """The agent can only walk over this cell when the door is open"""
- return self.is_open
- def see_behind(self):
- return self.is_open
- def render(self, r):
- c = COLORS[self.color]
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(c[0], c[1], c[2], 50)
- if self.is_open:
- r.drawPolygon([
- (CELL_PIXELS-2, CELL_PIXELS),
- (CELL_PIXELS , CELL_PIXELS),
- (CELL_PIXELS , 0),
- (CELL_PIXELS-2, 0)
- ])
- return
- r.drawPolygon([
- (0 , CELL_PIXELS),
- (CELL_PIXELS, CELL_PIXELS),
- (CELL_PIXELS, 0),
- (0 , 0)
- ])
- r.drawPolygon([
- (2 , CELL_PIXELS-2),
- (CELL_PIXELS-2, CELL_PIXELS-2),
- (CELL_PIXELS-2, 2),
- (2 , 2)
- ])
- r.drawLine(
- CELL_PIXELS * 0.55,
- CELL_PIXELS * 0.5,
- CELL_PIXELS * 0.75,
- CELL_PIXELS * 0.5
- )
- class Key(WorldObj):
- def __init__(self, color='blue'):
- super(Key, self).__init__('key', color)
- def can_pickup(self):
- return True
- def render(self, r):
- self._set_color(r)
- # Vertical quad
- r.drawPolygon([
- (16, 10),
- (20, 10),
- (20, 28),
- (16, 28)
- ])
- # Teeth
- r.drawPolygon([
- (12, 19),
- (16, 19),
- (16, 21),
- (12, 21)
- ])
- r.drawPolygon([
- (12, 26),
- (16, 26),
- (16, 28),
- (12, 28)
- ])
- r.drawCircle(18, 9, 6)
- r.setLineColor(0, 0, 0)
- r.setColor(0, 0, 0)
- r.drawCircle(18, 9, 2)
- class Ball(WorldObj):
- def __init__(self, color='blue'):
- super(Ball, self).__init__('ball', color)
- def can_pickup(self):
- return True
- def render(self, r):
- self._set_color(r)
- r.drawCircle(CELL_PIXELS * 0.5, CELL_PIXELS * 0.5, 10)
- class Box(WorldObj):
- def __init__(self, color, contains=None):
- super(Box, self).__init__('box', color)
- self.contains = contains
- def can_pickup(self):
- return True
- def render(self, r):
- c = COLORS[self.color]
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(0, 0, 0)
- r.setLineWidth(2)
- r.drawPolygon([
- (4 , CELL_PIXELS-4),
- (CELL_PIXELS-4, CELL_PIXELS-4),
- (CELL_PIXELS-4, 4),
- (4 , 4)
- ])
- r.drawLine(
- 4,
- CELL_PIXELS / 2,
- CELL_PIXELS - 4,
- CELL_PIXELS / 2
- )
- r.setLineWidth(1)
- def toggle(self, env, pos):
- # Replace the box by its contents
- env.grid.set(*pos, self.contains)
- return True
- class Grid:
- """
- Represent a grid and operations on it
- """
- def __init__(self, width, height):
- assert width >= 4
- assert height >= 4
- self.width = width
- self.height = height
- self.grid = [None] * width * height
- def __contains__(self, key):
- if isinstance(key, WorldObj):
- for e in self.grid:
- if e is key:
- return True
- elif isinstance(key, tuple):
- for e in self.grid:
- if e is None:
- continue
- if (e.color, e.type) == key:
- return True
- return False
- def __eq__(self, other):
- grid1 = self.encode()
- grid2 = other.encode()
- return np.array_equal(grid2, grid1)
- def __ne__(self, other):
- return not self == other
- def copy(self):
- from copy import deepcopy
- return deepcopy(self)
- def set(self, i, j, v):
- assert i >= 0 and i < self.width
- assert j >= 0 and j < self.height
- self.grid[j * self.width + i] = v
- def get(self, i, j):
- assert i >= 0 and i < self.width
- assert j >= 0 and j < self.height
- return self.grid[j * self.width + i]
- def horz_wall(self, x, y, length=None):
- if length is None:
- length = self.width - x
- for i in range(0, length):
- self.set(x + i, y, Wall())
- def vert_wall(self, x, y, length=None):
- if length is None:
- length = self.height - y
- for j in range(0, length):
- self.set(x, y + j, Wall())
- def wall_rect(self, x, y, w, h):
- self.horz_wall(x, y, w)
- self.horz_wall(x, y+h-1, w)
- self.vert_wall(x, y, h)
- self.vert_wall(x+w-1, y, h)
- def rotate_left(self):
- """
- Rotate the grid to the left (counter-clockwise)
- """
- grid = Grid(self.width, self.height)
- for j in range(0, self.height):
- for i in range(0, self.width):
- v = self.get(self.width - 1 - j, i)
- grid.set(i, j, v)
- return grid
- def slice(self, topX, topY, width, height):
- """
- Get a subset of the grid
- """
- grid = Grid(width, height)
- for j in range(0, height):
- for i in range(0, width):
- x = topX + i
- y = topY + j
- if x >= 0 and x < self.width and \
- y >= 0 and y < self.height:
- v = self.get(x, y)
- else:
- v = Wall()
- grid.set(i, j, v)
- return grid
- def render(self, r, tile_size):
- """
- Render this grid at a given scale
- :param r: target renderer object
- :param tile_size: tile size in pixels
- """
- assert r.width == self.width * tile_size
- assert r.height == self.height * tile_size
- # Total grid size at native scale
- widthPx = self.width * CELL_PIXELS
- heightPx = self.height * CELL_PIXELS
- """
- # Draw background (out-of-world) tiles the same colors as walls
- # so the agent understands these areas are not reachable
- c = COLORS['grey']
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(c[0], c[1], c[2])
- r.drawPolygon([
- (0 , heightPx),
- (widthPx, heightPx),
- (widthPx, 0),
- (0 , 0)
- ])
- """
- r.push()
- # Internally, we draw at the "large" full-grid resolution, but we
- # use the renderer to scale back to the desired size
- r.scale(tile_size / CELL_PIXELS, tile_size / CELL_PIXELS)
- # Draw the background of the in-world cells black
- r.fillRect(
- 0,
- 0,
- widthPx,
- heightPx,
- 0, 0, 0
- )
- # Draw grid lines
- r.setLineColor(100, 100, 100)
- for rowIdx in range(0, self.height):
- y = CELL_PIXELS * rowIdx
- r.drawLine(0, y, widthPx, y)
- for colIdx in range(0, self.width):
- x = CELL_PIXELS * colIdx
- r.drawLine(x, 0, x, heightPx)
- # Render the grid
- for j in range(0, self.height):
- for i in range(0, self.width):
- cell = self.get(i, j)
- if cell == None:
- continue
- r.push()
- r.translate(i * CELL_PIXELS, j * CELL_PIXELS)
- cell.render(r)
- r.pop()
- r.pop()
- def encode(self):
- """
- Produce a compact numpy encoding of the grid
- """
- codeSize = self.width * self.height * 3
- array = np.zeros(shape=(self.width, self.height, 3), dtype='uint8')
- for j in range(0, self.height):
- for i in range(0, self.width):
- v = self.get(i, j)
- if v == None:
- continue
- array[i, j, 0] = OBJECT_TO_IDX[v.type]
- array[i, j, 1] = COLOR_TO_IDX[v.color]
- if hasattr(v, 'is_open') and v.is_open:
- array[i, j, 2] = 1
- return array
- def decode(array):
- """
- Decode an array grid encoding back into a grid
- """
- width = array.shape[0]
- height = array.shape[1]
- assert array.shape[2] == 3
- grid = Grid(width, height)
- for j in range(0, height):
- for i in range(0, width):
- typeIdx = array[i, j, 0]
- colorIdx = array[i, j, 1]
- openIdx = array[i, j, 2]
- if typeIdx == 0:
- continue
- objType = IDX_TO_OBJECT[typeIdx]
- color = IDX_TO_COLOR[colorIdx]
- is_open = True if openIdx == 1 else 0
- if objType == 'wall':
- v = Wall(color)
- elif objType == 'ball':
- v = Ball(color)
- elif objType == 'key':
- v = Key(color)
- elif objType == 'box':
- v = Box(color)
- elif objType == 'door':
- v = Door(color, is_open)
- elif objType == 'locked_door':
- v = LockedDoor(color, is_open)
- elif objType == 'goal':
- v = Goal()
- else:
- assert False, "unknown obj type in decode '%s'" % objType
- grid.set(i, j, v)
- return grid
- def process_vis(
- grid,
- agent_pos,
- n_rays = 32,
- n_steps = 24,
- a_min = math.pi,
- a_max = 2 * math.pi
- ):
- """
- Use ray casting to determine the visibility of each grid cell
- """
- mask = np.zeros(shape=(grid.width, grid.height), dtype=np.bool)
- ang_step = (a_max - a_min) / n_rays
- dst_step = math.sqrt(grid.width ** 2 + grid.height ** 2) / n_steps
- ax = agent_pos[0] + 0.5
- ay = agent_pos[1] + 0.5
- for ray_idx in range(0, n_rays):
- angle = a_min + ang_step * ray_idx
- dx = dst_step * math.cos(angle)
- dy = dst_step * math.sin(angle)
- for step_idx in range(0, n_steps):
- x = ax + (step_idx * dx)
- y = ay + (step_idx * dy)
- i = math.floor(x)
- j = math.floor(y)
- # If we're outside of the grid, stop
- if i < 0 or i >= grid.width or j < 0 or j >= grid.height:
- break
- # Mark this cell as visible
- mask[i, j] = True
- # If we hit the obstructor, stop
- cell = grid.get(i, j)
- if cell and not cell.see_behind():
- break
- for j in range(0, grid.height):
- for i in range(0, grid.width):
- if not mask[i, j]:
- grid.set(i, j, None)
- #grid.set(i, j, Wall('red'))
- return mask
- def process_vis_prop(
- grid,
- agent_pos
- ):
- mask = np.zeros(shape=(grid.width, grid.height), dtype=np.bool)
- mask[agent_pos[0], agent_pos[1]] = True
- for j in reversed(range(1, grid.height)):
- for i in range(0, grid.width-1):
- if not mask[i, j]:
- continue
- cell = grid.get(i, j)
- if cell and not cell.see_behind():
- continue
- mask[i+1, j] = True
- mask[i+1, j-1] = True
- mask[i, j-1] = True
- for i in reversed(range(1, grid.width)):
- if not mask[i, j]:
- continue
- cell = grid.get(i, j)
- if cell and not cell.see_behind():
- continue
- mask[i-1, j-1] = True
- mask[i-1, j] = True
- mask[i, j-1] = True
- for j in range(0, grid.height):
- for i in range(0, grid.width):
- if not mask[i, j]:
- grid.set(i, j, None)
- #grid.set(i, j, Wall('red'))
- class MiniGridEnv(gym.Env):
- """
- 2D grid world game environment
- """
- metadata = {
- 'render.modes': ['human', 'rgb_array', 'pixmap'],
- 'video.frames_per_second' : 10
- }
- # Enumeration of possible actions
- class Actions(IntEnum):
- # Turn left, turn right, move forward
- left = 0
- right = 1
- forward = 2
- # Pick up an object
- pickup = 3
- # Drop an object
- drop = 4
- # Toggle/activate an object
- toggle = 5
- # Wait/stay put/do nothing
- wait = 6
- def __init__(
- self,
- grid_size=16,
- max_steps=100,
- see_through_walls=False,
- seed=1337
- ):
- # Action enumeration for this environment
- self.actions = MiniGridEnv.Actions
- # Actions are discrete integer values
- self.action_space = spaces.Discrete(len(self.actions))
- # Observations are dictionaries containing an
- # encoding of the grid and a textual 'mission' string
- self.observation_space = spaces.Box(
- low=0,
- high=255,
- shape=OBS_ARRAY_SIZE,
- dtype='uint8'
- )
- self.observation_space = spaces.Dict({
- 'image': self.observation_space
- })
- # Range of possible rewards
- self.reward_range = (0, 1)
- # Renderer object used to render the whole grid (full-scale)
- self.grid_render = None
- # Renderer used to render observations (small-scale agent view)
- self.obs_render = None
- # Environment configuration
- self.grid_size = grid_size
- self.max_steps = max_steps
- self.see_through_walls = see_through_walls
- # Starting position and direction for the agent
- self.start_pos = None
- self.start_dir = None
- # Initialize the RNG
- self.seed(seed=seed)
- # Initialize the state
- self.reset()
- def reset(self):
- # Generate a new random grid at the start of each episode
- # To keep the same grid for each episode, call env.seed() with
- # the same seed before calling env.reset()
- self._gen_grid(self.grid_size, self.grid_size)
- # These fields should be defined by _gen_grid
- assert self.start_pos is not None
- assert self.start_dir is not None
- # Check that the agent doesn't overlap with an object
- assert self.grid.get(*self.start_pos) is None
- # Place the agent in the starting position and direction
- self.agent_pos = self.start_pos
- self.agent_dir = self.start_dir
- # Item picked up, being carried, initially nothing
- self.carrying = None
- # Step count since episode start
- self.step_count = 0
- # Return first observation
- obs = self.gen_obs()
- return obs
- def seed(self, seed=1337):
- # Seed the random number generator
- self.np_random, _ = seeding.np_random(seed)
- return [seed]
- @property
- def steps_remaining(self):
- return self.max_steps - self.step_count
- def __str__(self):
- """
- Produce a pretty string of the environment's grid along with the agent.
- The agent is represented by `⏩`. A grid pixel is represented by 2-character
- string, the first one for the object and the second one for the color.
- """
- from copy import deepcopy
- def rotate_left(array):
- new_array = deepcopy(array)
- for i in range(len(array)):
- for j in range(len(array[0])):
- new_array[j][len(array[0])-1-i] = array[i][j]
- return new_array
- def vertically_symmetrize(array):
- new_array = deepcopy(array)
- for i in range(len(array)):
- for j in range(len(array[0])):
- new_array[i][len(array[0])-1-j] = array[i][j]
- return new_array
- # Map of object id to short string
- OBJECT_IDX_TO_IDS = {
- 0: ' ',
- 1: 'W',
- 2: 'D',
- 3: 'L',
- 4: 'K',
- 5: 'B',
- 6: 'X',
- 7: 'G'
- }
- # Short string for opened door
- OPENDED_DOOR_IDS = '_'
- # Map of color id to short string
- COLOR_IDX_TO_IDS = {
- 0: 'R',
- 1: 'G',
- 2: 'B',
- 3: 'P',
- 4: 'Y',
- 5: 'E'
- }
- # Map agent's direction to short string
- AGENT_DIR_TO_IDS = {
- 0: '⏩',
- 1: '⏬',
- 2: '⏪',
- 3: '⏫'
- }
- array = self.grid.encode()
- array = rotate_left(array)
- array = vertically_symmetrize(array)
- new_array = []
- for line in array:
- new_line = []
- for pixel in line:
- # If the door is opened
- if pixel[0] in [2, 3] and pixel[2] == 1:
- object_ids = OPENDED_DOOR_IDS
- else:
- object_ids = OBJECT_IDX_TO_IDS[pixel[0]]
- # If no object
- if pixel[0] == 0:
- color_ids = ' '
- else:
- color_ids = COLOR_IDX_TO_IDS[pixel[1]]
- new_line.append(object_ids + color_ids)
- new_array.append(new_line)
- # Add the agent
- new_array[self.agent_pos[1]][self.agent_pos[0]] = AGENT_DIR_TO_IDS[self.agent_dir]
- return "\n".join([" ".join(line) for line in new_array])
- def _gen_grid(self, width, height):
- assert False, "_gen_grid needs to be implemented by each environment"
- def _rand_int(self, low, high):
- """
- Generate random integer in [low,high[
- """
- return self.np_random.randint(low, high)
- def _rand_bool(self):
- """
- Generate random boolean value
- """
- return (self.np_random.randint(0, 2) == 0)
- def _rand_elem(self, iterable):
- """
- Pick a random element in a list
- """
- lst = list(iterable)
- idx = self._rand_int(0, len(lst))
- return lst[idx]
- def _rand_color(self):
- """
- Generate a random color name (string)
- """
- return self._rand_elem(COLOR_NAMES)
- def _rand_pos(self, xLow, xHigh, yLow, yHigh):
- """
- Generate a random (x,y) position tuple
- """
- return (
- self.np_random.randint(xLow, xHigh),
- self.np_random.randint(yLow, yHigh)
- )
- def place_obj(self, obj, top=None, size=None, reject_fn=None):
- """
- Place an object at an empty position in the grid
- :param top: top-left position of the rectangle where to place
- :param size: size of the rectangle where to place
- :param reject_fn: function to filter out potential positions
- """
- if top is None:
- top = (0, 0)
- if size is None:
- size = (self.grid.width, self.grid.height)
- while True:
- pos = np.array((
- self._rand_int(top[0], top[0] + size[0]),
- self._rand_int(top[1], top[1] + size[1])
- ))
- # Don't place the object on top of another object
- if self.grid.get(*pos) != None:
- continue
- # Don't place the object where the agent is
- if np.array_equal(pos, self.start_pos):
- continue
- # Check if there is a filtering criterion
- if reject_fn and reject_fn(self, pos):
- continue
- break
- self.grid.set(*pos, obj)
- return pos
- def place_agent(self, top=None, size=None, rand_dir=True):
- """
- Set the agent's starting point at an empty position in the grid
- """
- pos = self.place_obj(None, top, size)
- self.start_pos = pos
- if rand_dir:
- self.start_dir = self._rand_int(0, 4)
- return pos
- def get_dir_vec(self):
- """
- Get the direction vector for the agent, pointing in the direction
- of forward movement.
- """
- assert self.agent_dir >= 0 and self.agent_dir < 4
- return DIR_TO_VEC[self.agent_dir]
- def get_right_vec(self):
- """
- Get the vector pointing to the right of the agent.
- """
- dx, dy = self.get_dir_vec()
- return np.array((-dy, dx))
- def get_view_coords(self, i, j):
- """
- Translate and rotate absolute grid coordinates (i, j) into the
- agent's partially observable view (sub-grid). Note that the resulting
- coordinates may be negative or outside of the agent's view size.
- """
- ax, ay = self.agent_pos
- dx, dy = self.get_dir_vec()
- rx, ry = self.get_right_vec()
- # Compute the absolute coordinates of the top-left view corner
- sz = AGENT_VIEW_SIZE
- hs = AGENT_VIEW_SIZE // 2
- tx = ax + (dx * (sz-1)) - (rx * hs)
- ty = ay + (dy * (sz-1)) - (ry * hs)
- lx = i - tx
- ly = j - ty
- # Project the coordinates of the object relative to the top-left
- # corner onto the agent's own coordinate system
- vx = (rx*lx + ry*ly)
- vy = -(dx*lx + dy*ly)
- return vx, vy
- def get_view_exts(self):
- """
- Get the extents of the square set of tiles visible to the agent
- Note: the bottom extent indices are not included in the set
- """
- # Facing right
- if self.agent_dir == 0:
- topX = self.agent_pos[0]
- topY = self.agent_pos[1] - AGENT_VIEW_SIZE // 2
- # Facing down
- elif self.agent_dir == 1:
- topX = self.agent_pos[0] - AGENT_VIEW_SIZE // 2
- topY = self.agent_pos[1]
- # Facing left
- elif self.agent_dir == 2:
- topX = self.agent_pos[0] - AGENT_VIEW_SIZE + 1
- topY = self.agent_pos[1] - AGENT_VIEW_SIZE // 2
- # Facing up
- elif self.agent_dir == 3:
- topX = self.agent_pos[0] - AGENT_VIEW_SIZE // 2
- topY = self.agent_pos[1] - AGENT_VIEW_SIZE + 1
- else:
- assert False, "invalid agent direction"
- botX = topX + AGENT_VIEW_SIZE
- botY = topY + AGENT_VIEW_SIZE
- return (topX, topY, botX, botY)
- def agent_sees(self, x, y):
- """
- Check if a grid position is visible to the agent
- """
- vx, vy = self.get_view_coords(x, y)
- if vx < 0 or vy < 0 or vx >= AGENT_VIEW_SIZE or vy >= AGENT_VIEW_SIZE:
- return False
- obs = self.gen_obs()
- obs_grid = Grid.decode(obs['image'])
- obs_cell = obs_grid.get(vx, vy)
- world_cell = self.grid.get(x, y)
- return obs_cell is not None and obs_cell.type == world_cell.type
- def step(self, action):
- self.step_count += 1
- reward = 0
- done = False
- # Get the position in front of the agent
- fwd_pos = self.agent_pos + self.get_dir_vec()
- # Get the contents of the cell in front of the agent
- fwd_cell = self.grid.get(*fwd_pos)
- # Rotate left
- if action == self.actions.left:
- self.agent_dir -= 1
- if self.agent_dir < 0:
- self.agent_dir += 4
- # Rotate right
- elif action == self.actions.right:
- self.agent_dir = (self.agent_dir + 1) % 4
- # Move forward
- elif action == self.actions.forward:
- if fwd_cell == None or fwd_cell.can_overlap():
- self.agent_pos = fwd_pos
- if fwd_cell != None and fwd_cell.type == 'goal':
- done = True
- reward = 1
- # Pick up an object
- elif action == self.actions.pickup:
- if fwd_cell and fwd_cell.can_pickup():
- if self.carrying is None:
- self.carrying = fwd_cell
- self.grid.set(*fwd_pos, None)
- # Drop an object
- elif action == self.actions.drop:
- if not fwd_cell and self.carrying:
- self.grid.set(*fwd_pos, self.carrying)
- self.carrying = None
- # Toggle/activate an object
- elif action == self.actions.toggle:
- if fwd_cell:
- fwd_cell.toggle(self, fwd_pos)
- # Wait/do nothing
- elif action == self.actions.wait:
- pass
- else:
- assert False, "unknown action"
- if self.step_count >= self.max_steps:
- done = True
- obs = self.gen_obs()
- return obs, reward, done, {}
- def gen_obs(self):
- """
- Generate the agent's view (partially observable, low-resolution encoding)
- """
- topX, topY, botX, botY = self.get_view_exts()
- grid = self.grid.slice(topX, topY, AGENT_VIEW_SIZE, AGENT_VIEW_SIZE)
- for i in range(self.agent_dir + 1):
- grid = grid.rotate_left()
- # Make it so the agent sees what it's carrying
- # We do this by placing the carried object at the agent's position
- # in the agent's partially observable view
- agent_pos = grid.width // 2, grid.height - 1
- if self.carrying:
- grid.set(*agent_pos, self.carrying)
- else:
- grid.set(*agent_pos, None)
- # Process occluders and visibility
- # Note that this incurs some performance cost
- if not self.see_through_walls:
- grid.process_vis_prop(agent_pos=(3, 6))
- # Encode the partially observable view into a numpy array
- image = grid.encode()
- assert hasattr(self, 'mission'), "environments must define a textual mission string"
- # Observations are dictionaries containing:
- # - an image (partially observable view of the environment)
- # - the agent's direction/orientation (acting as a compass)
- # - a textual mission string (instructions for the agent)
- obs = {
- 'image': image,
- 'direction': self.agent_dir,
- 'mission': self.mission
- }
- return obs
- def get_obs_render(self, obs):
- """
- Render an agent observation for visualization
- """
- if self.obs_render == None:
- self.obs_render = Renderer(
- AGENT_VIEW_SIZE * CELL_PIXELS // 2,
- AGENT_VIEW_SIZE * CELL_PIXELS // 2
- )
- r = self.obs_render
- r.beginFrame()
- grid = Grid.decode(obs)
- # Render the whole grid
- grid.render(r, CELL_PIXELS // 2)
- # Draw the agent
- r.push()
- r.scale(0.5, 0.5)
- r.translate(
- CELL_PIXELS * (0.5 + AGENT_VIEW_SIZE // 2),
- CELL_PIXELS * (AGENT_VIEW_SIZE - 0.5)
- )
- r.rotate(3 * 90)
- r.setLineColor(255, 0, 0)
- r.setColor(255, 0, 0)
- r.drawPolygon([
- (-12, 10),
- ( 12, 0),
- (-12, -10)
- ])
- r.pop()
- r.endFrame()
- return r.getPixmap()
- def render(self, mode='human', close=False):
- """
- Render the whole-grid human view
- """
- if close:
- if self.grid_render:
- self.grid_render.close()
- return
- if self.grid_render is None:
- self.grid_render = Renderer(
- self.grid_size * CELL_PIXELS,
- self.grid_size * CELL_PIXELS,
- True if mode == 'human' else False
- )
- r = self.grid_render
- r.beginFrame()
- # Render the whole grid
- self.grid.render(r, CELL_PIXELS)
- # Draw the agent
- r.push()
- r.translate(
- CELL_PIXELS * (self.agent_pos[0] + 0.5),
- CELL_PIXELS * (self.agent_pos[1] + 0.5)
- )
- r.rotate(self.agent_dir * 90)
- r.setLineColor(255, 0, 0)
- r.setColor(255, 0, 0)
- r.drawPolygon([
- (-12, 10),
- ( 12, 0),
- (-12, -10)
- ])
- r.pop()
- # Highlight what the agent can see
- topX, topY, botX, botY = self.get_view_exts()
- r.fillRect(
- topX * CELL_PIXELS,
- topY * CELL_PIXELS,
- AGENT_VIEW_SIZE * CELL_PIXELS,
- AGENT_VIEW_SIZE * CELL_PIXELS,
- 200, 200, 200, 75
- )
- r.endFrame()
- if mode == 'rgb_array':
- return r.getArray()
- elif mode == 'pixmap':
- return r.getPixmap()
- return r
|