dynamicobstacles.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. from operator import add
  2. from typing import Optional
  3. from gymnasium.spaces import Discrete
  4. from minigrid.core.grid import Grid
  5. from minigrid.core.mission import MissionSpace
  6. from minigrid.core.world_object import Ball, Goal
  7. from minigrid.minigrid_env import MiniGridEnv
  8. class DynamicObstaclesEnv(MiniGridEnv):
  9. """
  10. ![dynamic_obstacles](../_static/figures/dynamic_obstacles.gif)
  11. ### Description
  12. This environment is an empty room with moving obstacles.
  13. The goal of the agent is to reach the green goal square without colliding
  14. with any obstacle. A large penalty is subtracted if the agent collides with
  15. an obstacle and the episode finishes. This environment is useful to test
  16. Dynamic Obstacle Avoidance for mobile robots with Reinforcement Learning in
  17. Partial Observability.
  18. ### Mission Space
  19. "get to the green goal square"
  20. ### Action Space
  21. | Num | Name | Action |
  22. |-----|--------------|--------------|
  23. | 0 | left | Turn left |
  24. | 1 | right | Turn right |
  25. | 2 | forward | Move forward |
  26. | 3 | pickup | Unused |
  27. | 4 | drop | Unused |
  28. | 5 | toggle | Unused |
  29. | 6 | done | Unused |
  30. ### Observation Encoding
  31. - Each tile is encoded as a 3 dimensional tuple:
  32. `(OBJECT_IDX, COLOR_IDX, STATE)`
  33. - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
  34. [minigrid/minigrid.py](minigrid/minigrid.py)
  35. - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
  36. ### Rewards
  37. A reward of '1' is given for success, and '0' for failure. A '-1' penalty is
  38. subtracted if the agent collides with an obstacle.
  39. ### Termination
  40. The episode ends if any one of the following conditions is met:
  41. 1. The agent reaches the goal.
  42. 2. The agent collides with an obstacle.
  43. 3. Timeout (see `max_steps`).
  44. ### Registered Configurations
  45. - `MiniGrid-Dynamic-Obstacles-5x5-v0`
  46. - `MiniGrid-Dynamic-Obstacles-Random-5x5-v0`
  47. - `MiniGrid-Dynamic-Obstacles-6x6-v0`
  48. - `MiniGrid-Dynamic-Obstacles-Random-6x6-v0`
  49. - `MiniGrid-Dynamic-Obstacles-8x8-v0`
  50. - `MiniGrid-Dynamic-Obstacles-16x16-v0`
  51. """
  52. def __init__(
  53. self,
  54. size=8,
  55. agent_start_pos=(1, 1),
  56. agent_start_dir=0,
  57. n_obstacles=4,
  58. max_steps: Optional[int] = None,
  59. **kwargs
  60. ):
  61. self.agent_start_pos = agent_start_pos
  62. self.agent_start_dir = agent_start_dir
  63. # Reduce obstacles if there are too many
  64. if n_obstacles <= size / 2 + 1:
  65. self.n_obstacles = int(n_obstacles)
  66. else:
  67. self.n_obstacles = int(size / 2)
  68. mission_space = MissionSpace(
  69. mission_func=lambda: "get to the green goal square"
  70. )
  71. if max_steps is None:
  72. max_steps = 4 * size**2
  73. super().__init__(
  74. mission_space=mission_space,
  75. grid_size=size,
  76. # Set this to True for maximum speed
  77. see_through_walls=True,
  78. max_steps=max_steps,
  79. **kwargs
  80. )
  81. # Allow only 3 actions permitted: left, right, forward
  82. self.action_space = Discrete(self.actions.forward + 1)
  83. self.reward_range = (-1, 1)
  84. def _gen_grid(self, width, height):
  85. # Create an empty grid
  86. self.grid = Grid(width, height)
  87. # Generate the surrounding walls
  88. self.grid.wall_rect(0, 0, width, height)
  89. # Place a goal square in the bottom-right corner
  90. self.grid.set(width - 2, height - 2, Goal())
  91. # Place the agent
  92. if self.agent_start_pos is not None:
  93. self.agent_pos = self.agent_start_pos
  94. self.agent_dir = self.agent_start_dir
  95. else:
  96. self.place_agent()
  97. # Place obstacles
  98. self.obstacles = []
  99. for i_obst in range(self.n_obstacles):
  100. self.obstacles.append(Ball())
  101. self.place_obj(self.obstacles[i_obst], max_tries=100)
  102. self.mission = "get to the green goal square"
  103. def step(self, action):
  104. # Invalid action
  105. if action >= self.action_space.n:
  106. action = 0
  107. # Check if there is an obstacle in front of the agent
  108. front_cell = self.grid.get(*self.front_pos)
  109. not_clear = front_cell and front_cell.type != "goal"
  110. # Update obstacle positions
  111. for i_obst in range(len(self.obstacles)):
  112. old_pos = self.obstacles[i_obst].cur_pos
  113. top = tuple(map(add, old_pos, (-1, -1)))
  114. try:
  115. self.place_obj(
  116. self.obstacles[i_obst], top=top, size=(3, 3), max_tries=100
  117. )
  118. self.grid.set(old_pos[0], old_pos[1], None)
  119. except Exception:
  120. pass
  121. # Update the agent's position/direction
  122. obs, reward, terminated, truncated, info = super().step(action)
  123. # If the agent tried to walk over an obstacle or wall
  124. if action == self.actions.forward and not_clear:
  125. reward = -1
  126. terminated = True
  127. return obs, reward, terminated, truncated, info
  128. return obs, reward, terminated, truncated, info