test_envs.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. import gym
  2. import numpy as np
  3. import pytest
  4. from gym.envs.registration import EnvSpec
  5. from gym.utils.env_checker import check_env
  6. from gym_minigrid.minigrid import Grid, MissionSpace
  7. from tests.utils import all_testing_env_specs, assert_equals
  8. CHECK_ENV_IGNORE_WARNINGS = [
  9. f"\x1b[33mWARN: {message}\x1b[0m"
  10. for message in [
  11. "A Box observation space minimum value is -infinity. This is probably too low.",
  12. "A Box observation space maximum value is -infinity. This is probably too high.",
  13. "For Box action spaces, we recommend using a symmetric and normalized space (range=[-1, 1] or [0, 1]). See https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html for more information.",
  14. "Initializing wrapper in old step API which returns one bool instead of two. It is recommended to set `new_step_api=True` to use new step API. This will be the default behaviour in future.",
  15. "Initializing environment in old step API which returns one bool instead of two. It is recommended to set `new_step_api=True` to use new step API. This will be the default behaviour in future.",
  16. "Core environment is written in old step API which returns one bool instead of two. It is recommended to norewrite the environment with new step API. ",
  17. ]
  18. ]
  19. @pytest.mark.parametrize(
  20. "spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]
  21. )
  22. def test_env(spec):
  23. # Capture warnings
  24. env = spec.make(disable_env_checker=True, new_step_api=True).unwrapped
  25. # Test if env adheres to Gym API
  26. with pytest.warns() as warnings:
  27. check_env(env)
  28. for warning in warnings.list:
  29. if warning.message.args[0] not in CHECK_ENV_IGNORE_WARNINGS:
  30. raise gym.error.Error(f"Unexpected warning: {warning.message}")
  31. # Note that this precludes running this test in multiple threads.
  32. # However, we probably already can't do multithreading due to some environments.
  33. SEED = 0
  34. NUM_STEPS = 50
  35. @pytest.mark.parametrize(
  36. "env_spec", all_testing_env_specs, ids=[env.id for env in all_testing_env_specs]
  37. )
  38. def test_env_determinism_rollout(env_spec: EnvSpec):
  39. """Run a rollout with two environments and assert equality.
  40. This test run a rollout of NUM_STEPS steps with two environments
  41. initialized with the same seed and assert that:
  42. - observation after first reset are the same
  43. - same actions are sampled by the two envs
  44. - observations are contained in the observation space
  45. - obs, rew, terminated, truncated and info are equals between the two envs
  46. """
  47. # Don't check rollout equality if it's a nondeterministic environment.
  48. if env_spec.nondeterministic is True:
  49. return
  50. env_1 = env_spec.make(disable_env_checker=True, new_step_api=True)
  51. env_2 = env_spec.make(disable_env_checker=True, new_step_api=True)
  52. initial_obs_1 = env_1.reset(seed=SEED)
  53. initial_obs_2 = env_2.reset(seed=SEED)
  54. assert_equals(initial_obs_1, initial_obs_2)
  55. env_1.action_space.seed(SEED)
  56. for time_step in range(NUM_STEPS):
  57. # We don't evaluate the determinism of actions
  58. action = env_1.action_space.sample()
  59. obs_1, rew_1, terminated_1, truncated_1, info_1 = env_1.step(action)
  60. obs_2, rew_2, terminated_2, truncated_2, info_2 = env_2.step(action)
  61. assert_equals(obs_1, obs_2, f"[{time_step}] ")
  62. assert env_1.observation_space.contains(
  63. obs_1
  64. ) # obs_2 verified by previous assertion
  65. assert rew_1 == rew_2, f"[{time_step}] reward 1={rew_1}, reward 2={rew_2}"
  66. assert terminated_1 == terminated_2, f"[{time_step}] terminated 1={terminated_1}, terminated 2={terminated_2}"
  67. assert truncated_1 == truncated_2, f"[{time_step}] truncated 1={truncated_1}, truncated 2={truncated_2}"
  68. assert_equals(info_1, info_2, f"[{time_step}] ")
  69. if terminated_1 or truncated_1: # terminated_2 and truncated_2 verified by previous assertion
  70. env_1.reset(seed=SEED)
  71. env_2.reset(seed=SEED)
  72. env_1.close()
  73. env_2.close()
  74. @pytest.mark.parametrize(
  75. "spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]
  76. )
  77. def test_render_modes(spec):
  78. env = spec.make(new_step_api=True)
  79. for mode in env.metadata.get("render_modes", []):
  80. if mode != "human":
  81. new_env = spec.make(new_step_api=True)
  82. new_env.reset()
  83. new_env.step(new_env.action_space.sample())
  84. new_env.render(mode=mode)
  85. @pytest.mark.parametrize("env_id", ["MiniGrid-DoorKey-6x6-v0"])
  86. def test_agent_sees_method(env_id):
  87. env = gym.make(env_id, new_step_api=True)
  88. goal_pos = (env.grid.width - 2, env.grid.height - 2)
  89. # Test the "in" operator on grid objects
  90. assert ("green", "goal") in env.grid
  91. assert ("blue", "key") not in env.grid
  92. # Test the env.agent_sees() function
  93. env.reset()
  94. for i in range(0, 500):
  95. action = env.action_space.sample()
  96. obs, reward, terminated, truncated, info = env.step(action)
  97. grid, _ = Grid.decode(obs["image"])
  98. goal_visible = ("green", "goal") in grid
  99. agent_sees_goal = env.agent_sees(*goal_pos)
  100. assert agent_sees_goal == goal_visible
  101. if terminated or truncated:
  102. env.reset()
  103. env.close()
  104. @pytest.mark.parametrize(
  105. "env_spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]
  106. )
  107. def old_run_test(env_spec):
  108. # Load the gym environment
  109. env = env_spec.make(new_step_api=True)
  110. env.max_steps = min(env.max_steps, 200)
  111. env.reset()
  112. env.render()
  113. # Verify that the same seed always produces the same environment
  114. for i in range(0, 5):
  115. seed = 1337 + i
  116. _ = env.reset(seed=seed)
  117. grid1 = env.grid
  118. _ = env.reset(seed=seed)
  119. grid2 = env.grid
  120. assert grid1 == grid2
  121. env.reset()
  122. # Run for a few episodes
  123. num_episodes = 0
  124. while num_episodes < 5:
  125. # Pick a random action
  126. action = env.action_space.sample()
  127. obs, reward, terminated, truncated, info = env.step(action)
  128. # Validate the agent position
  129. assert env.agent_pos[0] < env.width
  130. assert env.agent_pos[1] < env.height
  131. # Test observation encode/decode roundtrip
  132. img = obs["image"]
  133. grid, vis_mask = Grid.decode(img)
  134. img2 = grid.encode(vis_mask=vis_mask)
  135. assert np.array_equal(img, img2)
  136. # Test the env to string function
  137. str(env)
  138. # Check that the reward is within the specified range
  139. assert reward >= env.reward_range[0], reward
  140. assert reward <= env.reward_range[1], reward
  141. if terminated or truncated:
  142. num_episodes += 1
  143. env.reset()
  144. env.render()
  145. # Test the close method
  146. env.close()
  147. @pytest.mark.parametrize("env_id", ["MiniGrid-Empty-8x8-v0"])
  148. def test_interactive_mode(env_id):
  149. env = gym.make(env_id, new_step_api=True)
  150. env.reset()
  151. for i in range(0, 100):
  152. print(f"step {i}")
  153. # Pick a random action
  154. action = env.action_space.sample()
  155. obs, reward, terminated, truncated, info = env.step(action)
  156. # Test the close method
  157. env.close()
  158. def test_mission_space():
  159. # Test placeholders
  160. mission_space = MissionSpace(
  161. mission_func=lambda color, obj_type: f"Get the {color} {obj_type}.",
  162. ordered_placeholders=[["green", "red"], ["ball", "key"]],
  163. )
  164. assert mission_space.contains("Get the green ball.")
  165. assert mission_space.contains("Get the red key.")
  166. assert not mission_space.contains("Get the purple box.")
  167. # Test passing inverted placeholders
  168. assert not mission_space.contains("Get the key red.")
  169. # Test passing extra repeated placeholders
  170. assert not mission_space.contains("Get the key red key.")
  171. # Test contained placeholders like "get the" and "go get the". "get the" string is contained in both placeholders.
  172. mission_space = MissionSpace(
  173. mission_func=lambda get_syntax, obj_type: f"{get_syntax} {obj_type}.",
  174. ordered_placeholders=[
  175. ["go get the", "get the", "go fetch the", "fetch the"],
  176. ["ball", "key"],
  177. ],
  178. )
  179. assert mission_space.contains("get the ball.")
  180. assert mission_space.contains("go get the key.")
  181. assert mission_space.contains("go fetch the ball.")
  182. # Test repeated placeholders
  183. mission_space = MissionSpace(
  184. mission_func=lambda get_syntax, color_1, obj_type_1, color_2, obj_type_2: f"{get_syntax} {color_1} {obj_type_1} and the {color_2} {obj_type_2}.",
  185. ordered_placeholders=[
  186. ["go get the", "get the", "go fetch the", "fetch the"],
  187. ["green", "red"],
  188. ["ball", "key"],
  189. ["green", "red"],
  190. ["ball", "key"],
  191. ],
  192. )
  193. assert mission_space.contains("get the green key and the green key.")
  194. assert mission_space.contains("go fetch the red ball and the green key.")