minigrid.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305
  1. import hashlib
  2. import math
  3. import string
  4. from enum import IntEnum
  5. import gym
  6. import numpy as np
  7. import numpy.typing as npt
  8. from gym import spaces
  9. # Size in pixels of a tile in the full-scale human view
  10. from gym_minigrid.rendering import (
  11. downsample,
  12. fill_coords,
  13. highlight_img,
  14. point_in_circle,
  15. point_in_line,
  16. point_in_rect,
  17. point_in_triangle,
  18. rotate_fn,
  19. )
  20. TILE_PIXELS = 32
  21. # Map of color names to RGB values
  22. COLORS = {
  23. "red": np.array([255, 0, 0]),
  24. "green": np.array([0, 255, 0]),
  25. "blue": np.array([0, 0, 255]),
  26. "purple": np.array([112, 39, 195]),
  27. "yellow": np.array([255, 255, 0]),
  28. "grey": np.array([100, 100, 100]),
  29. }
  30. COLOR_NAMES = sorted(list(COLORS.keys()))
  31. # Used to map colors to integers
  32. COLOR_TO_IDX = {"red": 0, "green": 1, "blue": 2, "purple": 3, "yellow": 4, "grey": 5}
  33. IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
  34. # Map of object type to integers
  35. OBJECT_TO_IDX = {
  36. "unseen": 0,
  37. "empty": 1,
  38. "wall": 2,
  39. "floor": 3,
  40. "door": 4,
  41. "key": 5,
  42. "ball": 6,
  43. "box": 7,
  44. "goal": 8,
  45. "lava": 9,
  46. "agent": 10,
  47. }
  48. IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
  49. # Map of state names to integers
  50. STATE_TO_IDX = {
  51. "open": 0,
  52. "closed": 1,
  53. "locked": 2,
  54. }
  55. # Map of agent direction indices to vectors
  56. DIR_TO_VEC = [
  57. # Pointing right (positive X)
  58. np.array((1, 0)),
  59. # Down (positive Y)
  60. np.array((0, 1)),
  61. # Pointing left (negative X)
  62. np.array((-1, 0)),
  63. # Up (negative Y)
  64. np.array((0, -1)),
  65. ]
  66. class WorldObj:
  67. """
  68. Base class for grid world objects
  69. """
  70. def __init__(self, type, color):
  71. assert type in OBJECT_TO_IDX, type
  72. assert color in COLOR_TO_IDX, color
  73. self.type = type
  74. self.color = color
  75. self.contains = None
  76. # Initial position of the object
  77. self.init_pos = None
  78. # Current position of the object
  79. self.cur_pos = None
  80. def can_overlap(self):
  81. """Can the agent overlap with this?"""
  82. return False
  83. def can_pickup(self):
  84. """Can the agent pick this up?"""
  85. return False
  86. def can_contain(self):
  87. """Can this contain another object?"""
  88. return False
  89. def see_behind(self):
  90. """Can the agent see behind this object?"""
  91. return True
  92. def toggle(self, env, pos):
  93. """Method to trigger/toggle an action this object performs"""
  94. return False
  95. def encode(self):
  96. """Encode the a description of this object as a 3-tuple of integers"""
  97. return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], 0)
  98. @staticmethod
  99. def decode(type_idx, color_idx, state):
  100. """Create an object from a 3-tuple state description"""
  101. obj_type = IDX_TO_OBJECT[type_idx]
  102. color = IDX_TO_COLOR[color_idx]
  103. if obj_type == "empty" or obj_type == "unseen":
  104. return None
  105. # State, 0: open, 1: closed, 2: locked
  106. is_open = state == 0
  107. is_locked = state == 2
  108. if obj_type == "wall":
  109. v = Wall(color)
  110. elif obj_type == "floor":
  111. v = Floor(color)
  112. elif obj_type == "ball":
  113. v = Ball(color)
  114. elif obj_type == "key":
  115. v = Key(color)
  116. elif obj_type == "box":
  117. v = Box(color)
  118. elif obj_type == "door":
  119. v = Door(color, is_open, is_locked)
  120. elif obj_type == "goal":
  121. v = Goal()
  122. elif obj_type == "lava":
  123. v = Lava()
  124. else:
  125. assert False, "unknown object type in decode '%s'" % obj_type
  126. return v
  127. def render(self, r):
  128. """Draw this object with the given renderer"""
  129. raise NotImplementedError
  130. class Goal(WorldObj):
  131. def __init__(self):
  132. super().__init__("goal", "green")
  133. def can_overlap(self):
  134. return True
  135. def render(self, img):
  136. fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
  137. class Floor(WorldObj):
  138. """
  139. Colored floor tile the agent can walk over
  140. """
  141. def __init__(self, color="blue"):
  142. super().__init__("floor", color)
  143. def can_overlap(self):
  144. return True
  145. def render(self, img):
  146. # Give the floor a pale color
  147. color = COLORS[self.color] / 2
  148. fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color)
  149. class Lava(WorldObj):
  150. def __init__(self):
  151. super().__init__("lava", "red")
  152. def can_overlap(self):
  153. return True
  154. def render(self, img):
  155. c = (255, 128, 0)
  156. # Background color
  157. fill_coords(img, point_in_rect(0, 1, 0, 1), c)
  158. # Little waves
  159. for i in range(3):
  160. ylo = 0.3 + 0.2 * i
  161. yhi = 0.4 + 0.2 * i
  162. fill_coords(img, point_in_line(0.1, ylo, 0.3, yhi, r=0.03), (0, 0, 0))
  163. fill_coords(img, point_in_line(0.3, yhi, 0.5, ylo, r=0.03), (0, 0, 0))
  164. fill_coords(img, point_in_line(0.5, ylo, 0.7, yhi, r=0.03), (0, 0, 0))
  165. fill_coords(img, point_in_line(0.7, yhi, 0.9, ylo, r=0.03), (0, 0, 0))
  166. class Wall(WorldObj):
  167. def __init__(self, color="grey"):
  168. super().__init__("wall", color)
  169. def see_behind(self):
  170. return False
  171. def render(self, img):
  172. fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
  173. class Door(WorldObj):
  174. def __init__(self, color, is_open=False, is_locked=False):
  175. super().__init__("door", color)
  176. self.is_open = is_open
  177. self.is_locked = is_locked
  178. def can_overlap(self):
  179. """The agent can only walk over this cell when the door is open"""
  180. return self.is_open
  181. def see_behind(self):
  182. return self.is_open
  183. def toggle(self, env, pos):
  184. # If the player has the right key to open the door
  185. if self.is_locked:
  186. if isinstance(env.carrying, Key) and env.carrying.color == self.color:
  187. self.is_locked = False
  188. self.is_open = True
  189. return True
  190. return False
  191. self.is_open = not self.is_open
  192. return True
  193. def encode(self):
  194. """Encode the a description of this object as a 3-tuple of integers"""
  195. # State, 0: open, 1: closed, 2: locked
  196. if self.is_open:
  197. state = 0
  198. elif self.is_locked:
  199. state = 2
  200. # if door is closed and unlocked
  201. else:
  202. state = 1
  203. return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
  204. def render(self, img):
  205. c = COLORS[self.color]
  206. if self.is_open:
  207. fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c)
  208. fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0, 0, 0))
  209. return
  210. # Door frame and door
  211. if self.is_locked:
  212. fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
  213. fill_coords(img, point_in_rect(0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c))
  214. # Draw key slot
  215. fill_coords(img, point_in_rect(0.52, 0.75, 0.50, 0.56), c)
  216. else:
  217. fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
  218. fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0, 0, 0))
  219. fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c)
  220. fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0, 0, 0))
  221. # Draw door handle
  222. fill_coords(img, point_in_circle(cx=0.75, cy=0.50, r=0.08), c)
  223. class Key(WorldObj):
  224. def __init__(self, color="blue"):
  225. super().__init__("key", color)
  226. def can_pickup(self):
  227. return True
  228. def render(self, img):
  229. c = COLORS[self.color]
  230. # Vertical quad
  231. fill_coords(img, point_in_rect(0.50, 0.63, 0.31, 0.88), c)
  232. # Teeth
  233. fill_coords(img, point_in_rect(0.38, 0.50, 0.59, 0.66), c)
  234. fill_coords(img, point_in_rect(0.38, 0.50, 0.81, 0.88), c)
  235. # Ring
  236. fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.190), c)
  237. fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.064), (0, 0, 0))
  238. class Ball(WorldObj):
  239. def __init__(self, color="blue"):
  240. super().__init__("ball", color)
  241. def can_pickup(self):
  242. return True
  243. def render(self, img):
  244. fill_coords(img, point_in_circle(0.5, 0.5, 0.31), COLORS[self.color])
  245. class Box(WorldObj):
  246. def __init__(self, color, contains=None):
  247. super().__init__("box", color)
  248. self.contains = contains
  249. def can_pickup(self):
  250. return True
  251. def render(self, img):
  252. c = COLORS[self.color]
  253. # Outline
  254. fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c)
  255. fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0, 0, 0))
  256. # Horizontal slit
  257. fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c)
  258. def toggle(self, env, pos):
  259. # Replace the box by its contents
  260. env.grid.set(*pos, self.contains)
  261. return True
  262. class Grid:
  263. """
  264. Represent a grid and operations on it
  265. """
  266. # Static cache of pre-renderer tiles
  267. tile_cache = {}
  268. def __init__(self, width, height):
  269. assert width >= 3
  270. assert height >= 3
  271. self.width = width
  272. self.height = height
  273. self.grid = [None] * width * height
  274. def __contains__(self, key):
  275. if isinstance(key, WorldObj):
  276. for e in self.grid:
  277. if e is key:
  278. return True
  279. elif isinstance(key, tuple):
  280. for e in self.grid:
  281. if e is None:
  282. continue
  283. if (e.color, e.type) == key:
  284. return True
  285. if key[0] is None and key[1] == e.type:
  286. return True
  287. return False
  288. def __eq__(self, other):
  289. grid1 = self.encode()
  290. grid2 = other.encode()
  291. return np.array_equal(grid2, grid1)
  292. def __ne__(self, other):
  293. return not self == other
  294. def copy(self):
  295. from copy import deepcopy
  296. return deepcopy(self)
  297. def set(self, i, j, v):
  298. assert i >= 0 and i < self.width
  299. assert j >= 0 and j < self.height
  300. self.grid[j * self.width + i] = v
  301. def get(self, i, j):
  302. assert i >= 0 and i < self.width
  303. assert j >= 0 and j < self.height
  304. return self.grid[j * self.width + i]
  305. def horz_wall(self, x, y, length=None, obj_type=Wall):
  306. if length is None:
  307. length = self.width - x
  308. for i in range(0, length):
  309. self.set(x + i, y, obj_type())
  310. def vert_wall(self, x, y, length=None, obj_type=Wall):
  311. if length is None:
  312. length = self.height - y
  313. for j in range(0, length):
  314. self.set(x, y + j, obj_type())
  315. def wall_rect(self, x, y, w, h):
  316. self.horz_wall(x, y, w)
  317. self.horz_wall(x, y + h - 1, w)
  318. self.vert_wall(x, y, h)
  319. self.vert_wall(x + w - 1, y, h)
  320. def rotate_left(self):
  321. """
  322. Rotate the grid to the left (counter-clockwise)
  323. """
  324. grid = Grid(self.height, self.width)
  325. for i in range(self.width):
  326. for j in range(self.height):
  327. v = self.get(i, j)
  328. grid.set(j, grid.height - 1 - i, v)
  329. return grid
  330. def slice(self, topX, topY, width, height):
  331. """
  332. Get a subset of the grid
  333. """
  334. grid = Grid(width, height)
  335. for j in range(0, height):
  336. for i in range(0, width):
  337. x = topX + i
  338. y = topY + j
  339. if x >= 0 and x < self.width and y >= 0 and y < self.height:
  340. v = self.get(x, y)
  341. else:
  342. v = Wall()
  343. grid.set(i, j, v)
  344. return grid
  345. @classmethod
  346. def render_tile(
  347. cls, obj, agent_dir=None, highlight=False, tile_size=TILE_PIXELS, subdivs=3
  348. ):
  349. """
  350. Render a tile and cache the result
  351. """
  352. # Hash map lookup key for the cache
  353. key = (agent_dir, highlight, tile_size)
  354. key = obj.encode() + key if obj else key
  355. if key in cls.tile_cache:
  356. return cls.tile_cache[key]
  357. img = np.zeros(
  358. shape=(tile_size * subdivs, tile_size * subdivs, 3), dtype=np.uint8
  359. )
  360. # Draw the grid lines (top and left edges)
  361. fill_coords(img, point_in_rect(0, 0.031, 0, 1), (100, 100, 100))
  362. fill_coords(img, point_in_rect(0, 1, 0, 0.031), (100, 100, 100))
  363. if obj is not None:
  364. obj.render(img)
  365. # Overlay the agent on top
  366. if agent_dir is not None:
  367. tri_fn = point_in_triangle(
  368. (0.12, 0.19),
  369. (0.87, 0.50),
  370. (0.12, 0.81),
  371. )
  372. # Rotate the agent based on its direction
  373. tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5, theta=0.5 * math.pi * agent_dir)
  374. fill_coords(img, tri_fn, (255, 0, 0))
  375. # Highlight the cell if needed
  376. if highlight:
  377. highlight_img(img)
  378. # Downsample the image to perform supersampling/anti-aliasing
  379. img = downsample(img, subdivs)
  380. # Cache the rendered tile
  381. cls.tile_cache[key] = img
  382. return img
  383. def render(self, tile_size, agent_pos=None, agent_dir=None, highlight_mask=None):
  384. """
  385. Render this grid at a given scale
  386. :param r: target renderer object
  387. :param tile_size: tile size in pixels
  388. """
  389. if highlight_mask is None:
  390. highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  391. # Compute the total grid size
  392. width_px = self.width * tile_size
  393. height_px = self.height * tile_size
  394. img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8)
  395. # Render the grid
  396. for j in range(0, self.height):
  397. for i in range(0, self.width):
  398. cell = self.get(i, j)
  399. agent_here = np.array_equal(agent_pos, (i, j))
  400. tile_img = Grid.render_tile(
  401. cell,
  402. agent_dir=agent_dir if agent_here else None,
  403. highlight=highlight_mask[i, j],
  404. tile_size=tile_size,
  405. )
  406. ymin = j * tile_size
  407. ymax = (j + 1) * tile_size
  408. xmin = i * tile_size
  409. xmax = (i + 1) * tile_size
  410. img[ymin:ymax, xmin:xmax, :] = tile_img
  411. return img
  412. def encode(self, vis_mask=None):
  413. """
  414. Produce a compact numpy encoding of the grid
  415. """
  416. if vis_mask is None:
  417. vis_mask = np.ones((self.width, self.height), dtype=bool)
  418. array = np.zeros((self.width, self.height, 3), dtype="uint8")
  419. for i in range(self.width):
  420. for j in range(self.height):
  421. if vis_mask[i, j]:
  422. v = self.get(i, j)
  423. if v is None:
  424. array[i, j, 0] = OBJECT_TO_IDX["empty"]
  425. array[i, j, 1] = 0
  426. array[i, j, 2] = 0
  427. else:
  428. array[i, j, :] = v.encode()
  429. return array
  430. @staticmethod
  431. def decode(array):
  432. """
  433. Decode an array grid encoding back into a grid
  434. """
  435. width, height, channels = array.shape
  436. assert channels == 3
  437. vis_mask = np.ones(shape=(width, height), dtype=bool)
  438. grid = Grid(width, height)
  439. for i in range(width):
  440. for j in range(height):
  441. type_idx, color_idx, state = array[i, j]
  442. v = WorldObj.decode(type_idx, color_idx, state)
  443. grid.set(i, j, v)
  444. vis_mask[i, j] = type_idx != OBJECT_TO_IDX["unseen"]
  445. return grid, vis_mask
  446. def process_vis(self, agent_pos):
  447. mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  448. mask[agent_pos[0], agent_pos[1]] = True
  449. for j in reversed(range(0, self.height)):
  450. for i in range(0, self.width - 1):
  451. if not mask[i, j]:
  452. continue
  453. cell = self.get(i, j)
  454. if cell and not cell.see_behind():
  455. continue
  456. mask[i + 1, j] = True
  457. if j > 0:
  458. mask[i + 1, j - 1] = True
  459. mask[i, j - 1] = True
  460. for i in reversed(range(1, self.width)):
  461. if not mask[i, j]:
  462. continue
  463. cell = self.get(i, j)
  464. if cell and not cell.see_behind():
  465. continue
  466. mask[i - 1, j] = True
  467. if j > 0:
  468. mask[i - 1, j - 1] = True
  469. mask[i, j - 1] = True
  470. for j in range(0, self.height):
  471. for i in range(0, self.width):
  472. if not mask[i, j]:
  473. self.set(i, j, None)
  474. return mask
  475. class MiniGridEnv(gym.Env):
  476. """
  477. 2D grid world game environment
  478. """
  479. metadata = {
  480. # Deprecated: use 'render_modes' instead
  481. "render.modes": ["human", "rgb_array"],
  482. "video.frames_per_second": 10, # Deprecated: use 'render_fps' instead
  483. "render_modes": ["human", "rgb_array"],
  484. "render_fps": 10,
  485. }
  486. # Enumeration of possible actions
  487. class Actions(IntEnum):
  488. # Turn left, turn right, move forward
  489. left = 0
  490. right = 1
  491. forward = 2
  492. # Pick up an object
  493. pickup = 3
  494. # Drop an object
  495. drop = 4
  496. # Toggle/activate an object
  497. toggle = 5
  498. # Done completing task
  499. done = 6
  500. def __init__(
  501. self,
  502. grid_size: int = None,
  503. width: int = None,
  504. height: int = None,
  505. max_steps: int = 100,
  506. see_through_walls: bool = False,
  507. agent_view_size: int = 7,
  508. render_mode: str = None,
  509. **kwargs
  510. ):
  511. # Can't set both grid_size and width/height
  512. if grid_size:
  513. assert width is None and height is None
  514. width = grid_size
  515. height = grid_size
  516. # Action enumeration for this environment
  517. self.actions = MiniGridEnv.Actions
  518. # Actions are discrete integer values
  519. self.action_space = spaces.Discrete(len(self.actions))
  520. # Number of cells (width and height) in the agent view
  521. assert agent_view_size % 2 == 1
  522. assert agent_view_size >= 3
  523. self.agent_view_size = agent_view_size
  524. # Observations are dictionaries containing an
  525. # encoding of the grid and a textual 'mission' string
  526. self.observation_space = spaces.Box(
  527. low=0,
  528. high=255,
  529. shape=(self.agent_view_size, self.agent_view_size, 3),
  530. dtype="uint8",
  531. )
  532. self.observation_space = spaces.Dict(
  533. {
  534. "image": self.observation_space,
  535. "direction": spaces.Discrete(4),
  536. "mission": spaces.Text(
  537. max_length=200,
  538. charset=string.ascii_letters + string.digits + " .,!-",
  539. ),
  540. }
  541. )
  542. # render mode
  543. self.render_mode = render_mode
  544. # Range of possible rewards
  545. self.reward_range = (0, 1)
  546. # Environment configuration
  547. self.width = width
  548. self.height = height
  549. self.max_steps = max_steps
  550. self.see_through_walls = see_through_walls
  551. # Current position and direction of the agent
  552. self.agent_pos = None
  553. self.agent_dir = None
  554. # Initialize the state
  555. self.reset()
  556. def reset(self, *, seed=None, return_info=False, options=None):
  557. super().reset(seed=seed)
  558. # Current position and direction of the agent
  559. NDArrayInt = npt.NDArray[np.int_]
  560. self.agent_pos: NDArrayInt = None
  561. self.agent_dir: int = None
  562. # Generate a new random grid at the start of each episode
  563. self._gen_grid(self.width, self.height)
  564. # These fields should be defined by _gen_grid
  565. assert self.agent_pos is not None
  566. assert self.agent_dir is not None
  567. # Check that the agent doesn't overlap with an object
  568. start_cell = self.grid.get(*self.agent_pos)
  569. assert start_cell is None or start_cell.can_overlap()
  570. # Item picked up, being carried, initially nothing
  571. self.carrying = None
  572. # Step count since episode start
  573. self.step_count = 0
  574. # Return first observation
  575. obs = self.gen_obs()
  576. return obs
  577. def hash(self, size=16):
  578. """Compute a hash that uniquely identifies the current state of the environment.
  579. :param size: Size of the hashing
  580. """
  581. sample_hash = hashlib.sha256()
  582. to_encode = [self.grid.encode().tolist(), self.agent_pos, self.agent_dir]
  583. for item in to_encode:
  584. sample_hash.update(str(item).encode("utf8"))
  585. return sample_hash.hexdigest()[:size]
  586. @property
  587. def steps_remaining(self):
  588. return self.max_steps - self.step_count
  589. def __str__(self):
  590. """
  591. Produce a pretty string of the environment's grid along with the agent.
  592. A grid cell is represented by 2-character string, the first one for
  593. the object and the second one for the color.
  594. """
  595. # Map of object types to short string
  596. OBJECT_TO_STR = {
  597. "wall": "W",
  598. "floor": "F",
  599. "door": "D",
  600. "key": "K",
  601. "ball": "A",
  602. "box": "B",
  603. "goal": "G",
  604. "lava": "V",
  605. }
  606. # Map agent's direction to short string
  607. AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
  608. str = ""
  609. for j in range(self.grid.height):
  610. for i in range(self.grid.width):
  611. if i == self.agent_pos[0] and j == self.agent_pos[1]:
  612. str += 2 * AGENT_DIR_TO_STR[self.agent_dir]
  613. continue
  614. c = self.grid.get(i, j)
  615. if c is None:
  616. str += " "
  617. continue
  618. if c.type == "door":
  619. if c.is_open:
  620. str += "__"
  621. elif c.is_locked:
  622. str += "L" + c.color[0].upper()
  623. else:
  624. str += "D" + c.color[0].upper()
  625. continue
  626. str += OBJECT_TO_STR[c.type] + c.color[0].upper()
  627. if j < self.grid.height - 1:
  628. str += "\n"
  629. return str
  630. def _gen_grid(self, width, height):
  631. assert False, "_gen_grid needs to be implemented by each environment"
  632. def _reward(self):
  633. """
  634. Compute the reward to be given upon success
  635. """
  636. return 1 - 0.9 * (self.step_count / self.max_steps)
  637. def _rand_int(self, low, high):
  638. """
  639. Generate random integer in [low,high[
  640. """
  641. return self.np_random.integers(low, high)
  642. def _rand_float(self, low, high):
  643. """
  644. Generate random float in [low,high[
  645. """
  646. return self.np_random.uniform(low, high)
  647. def _rand_bool(self):
  648. """
  649. Generate random boolean value
  650. """
  651. return self.np_random.integers(0, 2) == 0
  652. def _rand_elem(self, iterable):
  653. """
  654. Pick a random element in a list
  655. """
  656. lst = list(iterable)
  657. idx = self._rand_int(0, len(lst))
  658. return lst[idx]
  659. def _rand_subset(self, iterable, num_elems):
  660. """
  661. Sample a random subset of distinct elements of a list
  662. """
  663. lst = list(iterable)
  664. assert num_elems <= len(lst)
  665. out = []
  666. while len(out) < num_elems:
  667. elem = self._rand_elem(lst)
  668. lst.remove(elem)
  669. out.append(elem)
  670. return out
  671. def _rand_color(self):
  672. """
  673. Generate a random color name (string)
  674. """
  675. return self._rand_elem(COLOR_NAMES)
  676. def _rand_pos(self, xLow, xHigh, yLow, yHigh):
  677. """
  678. Generate a random (x,y) position tuple
  679. """
  680. return (
  681. self.np_random.integers(xLow, xHigh),
  682. self.np_random.integers(yLow, yHigh),
  683. )
  684. def place_obj(self, obj, top=None, size=None, reject_fn=None, max_tries=math.inf):
  685. """
  686. Place an object at an empty position in the grid
  687. :param top: top-left position of the rectangle where to place
  688. :param size: size of the rectangle where to place
  689. :param reject_fn: function to filter out potential positions
  690. """
  691. if top is None:
  692. top = (0, 0)
  693. else:
  694. top = (max(top[0], 0), max(top[1], 0))
  695. if size is None:
  696. size = (self.grid.width, self.grid.height)
  697. num_tries = 0
  698. while True:
  699. # This is to handle with rare cases where rejection sampling
  700. # gets stuck in an infinite loop
  701. if num_tries > max_tries:
  702. raise RecursionError("rejection sampling failed in place_obj")
  703. num_tries += 1
  704. pos = np.array(
  705. (
  706. self._rand_int(top[0], min(top[0] + size[0], self.grid.width)),
  707. self._rand_int(top[1], min(top[1] + size[1], self.grid.height)),
  708. )
  709. )
  710. # Don't place the object on top of another object
  711. if self.grid.get(*pos) is not None:
  712. continue
  713. # Don't place the object where the agent is
  714. if np.array_equal(pos, self.agent_pos):
  715. continue
  716. # Check if there is a filtering criterion
  717. if reject_fn and reject_fn(self, pos):
  718. continue
  719. break
  720. self.grid.set(*pos, obj)
  721. if obj is not None:
  722. obj.init_pos = pos
  723. obj.cur_pos = pos
  724. return pos
  725. def put_obj(self, obj, i, j):
  726. """
  727. Put an object at a specific position in the grid
  728. """
  729. self.grid.set(i, j, obj)
  730. obj.init_pos = (i, j)
  731. obj.cur_pos = (i, j)
  732. def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf):
  733. """
  734. Set the agent's starting point at an empty position in the grid
  735. """
  736. self.agent_pos = None
  737. pos = self.place_obj(None, top, size, max_tries=max_tries)
  738. self.agent_pos = pos
  739. if rand_dir:
  740. self.agent_dir = self._rand_int(0, 4)
  741. return pos
  742. @property
  743. def dir_vec(self):
  744. """
  745. Get the direction vector for the agent, pointing in the direction
  746. of forward movement.
  747. """
  748. assert self.agent_dir >= 0 and self.agent_dir < 4
  749. return DIR_TO_VEC[self.agent_dir]
  750. @property
  751. def right_vec(self):
  752. """
  753. Get the vector pointing to the right of the agent.
  754. """
  755. dx, dy = self.dir_vec
  756. return np.array((-dy, dx))
  757. @property
  758. def front_pos(self):
  759. """
  760. Get the position of the cell that is right in front of the agent
  761. """
  762. return self.agent_pos + self.dir_vec
  763. def get_view_coords(self, i, j):
  764. """
  765. Translate and rotate absolute grid coordinates (i, j) into the
  766. agent's partially observable view (sub-grid). Note that the resulting
  767. coordinates may be negative or outside of the agent's view size.
  768. """
  769. ax, ay = self.agent_pos
  770. dx, dy = self.dir_vec
  771. rx, ry = self.right_vec
  772. # Compute the absolute coordinates of the top-left view corner
  773. sz = self.agent_view_size
  774. hs = self.agent_view_size // 2
  775. tx = ax + (dx * (sz - 1)) - (rx * hs)
  776. ty = ay + (dy * (sz - 1)) - (ry * hs)
  777. lx = i - tx
  778. ly = j - ty
  779. # Project the coordinates of the object relative to the top-left
  780. # corner onto the agent's own coordinate system
  781. vx = rx * lx + ry * ly
  782. vy = -(dx * lx + dy * ly)
  783. return vx, vy
  784. def get_view_exts(self, agent_view_size=None):
  785. """
  786. Get the extents of the square set of tiles visible to the agent
  787. Note: the bottom extent indices are not included in the set
  788. if agent_view_size is None, use self.agent_view_size
  789. """
  790. agent_view_size = agent_view_size or self.agent_view_size
  791. # Facing right
  792. if self.agent_dir == 0:
  793. topX = self.agent_pos[0]
  794. topY = self.agent_pos[1] - agent_view_size // 2
  795. # Facing down
  796. elif self.agent_dir == 1:
  797. topX = self.agent_pos[0] - agent_view_size // 2
  798. topY = self.agent_pos[1]
  799. # Facing left
  800. elif self.agent_dir == 2:
  801. topX = self.agent_pos[0] - agent_view_size + 1
  802. topY = self.agent_pos[1] - agent_view_size // 2
  803. # Facing up
  804. elif self.agent_dir == 3:
  805. topX = self.agent_pos[0] - agent_view_size // 2
  806. topY = self.agent_pos[1] - agent_view_size + 1
  807. else:
  808. assert False, "invalid agent direction"
  809. botX = topX + agent_view_size
  810. botY = topY + agent_view_size
  811. return (topX, topY, botX, botY)
  812. def relative_coords(self, x, y):
  813. """
  814. Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates
  815. """
  816. vx, vy = self.get_view_coords(x, y)
  817. if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size:
  818. return None
  819. return vx, vy
  820. def in_view(self, x, y):
  821. """
  822. check if a grid position is visible to the agent
  823. """
  824. return self.relative_coords(x, y) is not None
  825. def agent_sees(self, x, y):
  826. """
  827. Check if a non-empty grid position is visible to the agent
  828. """
  829. coordinates = self.relative_coords(x, y)
  830. if coordinates is None:
  831. return False
  832. vx, vy = coordinates
  833. obs = self.gen_obs()
  834. obs_grid, _ = Grid.decode(obs["image"])
  835. obs_cell = obs_grid.get(vx, vy)
  836. world_cell = self.grid.get(x, y)
  837. return obs_cell is not None and obs_cell.type == world_cell.type
  838. def step(self, action):
  839. self.step_count += 1
  840. reward = 0
  841. done = False
  842. # Get the position in front of the agent
  843. fwd_pos = self.front_pos
  844. # Get the contents of the cell in front of the agent
  845. fwd_cell = self.grid.get(*fwd_pos)
  846. # Rotate left
  847. if action == self.actions.left:
  848. self.agent_dir -= 1
  849. if self.agent_dir < 0:
  850. self.agent_dir += 4
  851. # Rotate right
  852. elif action == self.actions.right:
  853. self.agent_dir = (self.agent_dir + 1) % 4
  854. # Move forward
  855. elif action == self.actions.forward:
  856. if fwd_cell is None or fwd_cell.can_overlap():
  857. self.agent_pos = fwd_pos
  858. if fwd_cell is not None and fwd_cell.type == "goal":
  859. done = True
  860. reward = self._reward()
  861. if fwd_cell is not None and fwd_cell.type == "lava":
  862. done = True
  863. # Pick up an object
  864. elif action == self.actions.pickup:
  865. if fwd_cell and fwd_cell.can_pickup():
  866. if self.carrying is None:
  867. self.carrying = fwd_cell
  868. self.carrying.cur_pos = np.array([-1, -1])
  869. self.grid.set(*fwd_pos, None)
  870. # Drop an object
  871. elif action == self.actions.drop:
  872. if not fwd_cell and self.carrying:
  873. self.grid.set(*fwd_pos, self.carrying)
  874. self.carrying.cur_pos = fwd_pos
  875. self.carrying = None
  876. # Toggle/activate an object
  877. elif action == self.actions.toggle:
  878. if fwd_cell:
  879. fwd_cell.toggle(self, fwd_pos)
  880. # Done action (not used by default)
  881. elif action == self.actions.done:
  882. pass
  883. else:
  884. assert False, "unknown action"
  885. if self.step_count >= self.max_steps:
  886. done = True
  887. obs = self.gen_obs()
  888. return obs, reward, done, {}
  889. def gen_obs_grid(self, agent_view_size=None):
  890. """
  891. Generate the sub-grid observed by the agent.
  892. This method also outputs a visibility mask telling us which grid
  893. cells the agent can actually see.
  894. if agent_view_size is None, self.agent_view_size is used
  895. """
  896. topX, topY, botX, botY = self.get_view_exts(agent_view_size)
  897. agent_view_size = agent_view_size or self.agent_view_size
  898. grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size)
  899. for i in range(self.agent_dir + 1):
  900. grid = grid.rotate_left()
  901. # Process occluders and visibility
  902. # Note that this incurs some performance cost
  903. if not self.see_through_walls:
  904. vis_mask = grid.process_vis(
  905. agent_pos=(agent_view_size // 2, agent_view_size - 1)
  906. )
  907. else:
  908. vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool)
  909. # Make it so the agent sees what it's carrying
  910. # We do this by placing the carried object at the agent's position
  911. # in the agent's partially observable view
  912. agent_pos = grid.width // 2, grid.height - 1
  913. if self.carrying:
  914. grid.set(*agent_pos, self.carrying)
  915. else:
  916. grid.set(*agent_pos, None)
  917. return grid, vis_mask
  918. def gen_obs(self):
  919. """
  920. Generate the agent's view (partially observable, low-resolution encoding)
  921. """
  922. grid, vis_mask = self.gen_obs_grid()
  923. # Encode the partially observable view into a numpy array
  924. image = grid.encode(vis_mask)
  925. assert hasattr(
  926. self, "mission"
  927. ), "environments must define a textual mission string"
  928. # Observations are dictionaries containing:
  929. # - an image (partially observable view of the environment)
  930. # - the agent's direction/orientation (acting as a compass)
  931. # - a textual mission string (instructions for the agent)
  932. obs = {"image": image, "direction": self.agent_dir, "mission": self.mission}
  933. return obs
  934. def get_obs_render(self, obs, tile_size=TILE_PIXELS // 2):
  935. """
  936. Render an agent observation for visualization
  937. """
  938. grid, vis_mask = Grid.decode(obs)
  939. # Render the whole grid
  940. img = grid.render(
  941. tile_size,
  942. agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1),
  943. agent_dir=3,
  944. highlight_mask=vis_mask,
  945. )
  946. return img
  947. def render(self, mode="human", close=False, highlight=True, tile_size=TILE_PIXELS):
  948. """
  949. Render the whole-grid human view
  950. """
  951. if self.render_mode is not None:
  952. mode = self.render_mode
  953. if close:
  954. if self.window:
  955. self.window.close()
  956. return
  957. if mode == "human" and not self.window:
  958. import gym_minigrid.window
  959. self.window = gym_minigrid.window.Window("gym_minigrid")
  960. self.window.show(block=False)
  961. # Compute which cells are visible to the agent
  962. _, vis_mask = self.gen_obs_grid()
  963. # Compute the world coordinates of the bottom-left corner
  964. # of the agent's view area
  965. f_vec = self.dir_vec
  966. r_vec = self.right_vec
  967. top_left = (
  968. self.agent_pos
  969. + f_vec * (self.agent_view_size - 1)
  970. - r_vec * (self.agent_view_size // 2)
  971. )
  972. # Mask of which cells to highlight
  973. highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  974. # For each cell in the visibility mask
  975. for vis_j in range(0, self.agent_view_size):
  976. for vis_i in range(0, self.agent_view_size):
  977. # If this cell is not visible, don't highlight it
  978. if not vis_mask[vis_i, vis_j]:
  979. continue
  980. # Compute the world coordinates of this cell
  981. abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i)
  982. if abs_i < 0 or abs_i >= self.width:
  983. continue
  984. if abs_j < 0 or abs_j >= self.height:
  985. continue
  986. # Mark this cell to be highlighted
  987. highlight_mask[abs_i, abs_j] = True
  988. # Render the whole grid
  989. img = self.grid.render(
  990. tile_size,
  991. self.agent_pos,
  992. self.agent_dir,
  993. highlight_mask=highlight_mask if highlight else None,
  994. )
  995. if mode == "human":
  996. self.window.set_caption(self.mission)
  997. self.window.show_img(img)
  998. return img
  999. def close(self):
  1000. if self.window:
  1001. self.window.close()
  1002. return