wrappers.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. import math
  2. import operator
  3. from functools import reduce
  4. import gym
  5. import numpy as np
  6. from gym import spaces
  7. from gym.core import ObservationWrapper, Wrapper
  8. from gym_minigrid.minigrid import COLOR_TO_IDX, OBJECT_TO_IDX, STATE_TO_IDX, Goal
  9. class ReseedWrapper(Wrapper):
  10. """
  11. Wrapper to always regenerate an environment with the same set of seeds.
  12. This can be used to force an environment to always keep the same
  13. configuration when reset.
  14. """
  15. def __init__(self, env, seeds=[0], seed_idx=0):
  16. self.seeds = list(seeds)
  17. self.seed_idx = seed_idx
  18. super().__init__(env)
  19. def reset(self, **kwargs):
  20. seed = self.seeds[self.seed_idx]
  21. self.seed_idx = (self.seed_idx + 1) % len(self.seeds)
  22. return self.env.reset(seed=seed, **kwargs)
  23. def step(self, action):
  24. obs, reward, done, info = self.env.step(action)
  25. return obs, reward, done, info
  26. class ActionBonus(Wrapper):
  27. """
  28. Wrapper which adds an exploration bonus.
  29. This is a reward to encourage exploration of less
  30. visited (state,action) pairs.
  31. """
  32. def __init__(self, env):
  33. super().__init__(env)
  34. self.counts = {}
  35. def step(self, action):
  36. obs, reward, done, info = self.env.step(action)
  37. env = self.unwrapped
  38. tup = (tuple(env.agent_pos), env.agent_dir, action)
  39. # Get the count for this (s,a) pair
  40. pre_count = 0
  41. if tup in self.counts:
  42. pre_count = self.counts[tup]
  43. # Update the count for this (s,a) pair
  44. new_count = pre_count + 1
  45. self.counts[tup] = new_count
  46. bonus = 1 / math.sqrt(new_count)
  47. reward += bonus
  48. return obs, reward, done, info
  49. def reset(self, **kwargs):
  50. return self.env.reset(**kwargs)
  51. class StateBonus(Wrapper):
  52. """
  53. Adds an exploration bonus based on which positions
  54. are visited on the grid.
  55. """
  56. def __init__(self, env):
  57. super().__init__(env)
  58. self.counts = {}
  59. def step(self, action):
  60. obs, reward, done, info = self.env.step(action)
  61. # Tuple based on which we index the counts
  62. # We use the position after an update
  63. env = self.unwrapped
  64. tup = tuple(env.agent_pos)
  65. # Get the count for this key
  66. pre_count = 0
  67. if tup in self.counts:
  68. pre_count = self.counts[tup]
  69. # Update the count for this key
  70. new_count = pre_count + 1
  71. self.counts[tup] = new_count
  72. bonus = 1 / math.sqrt(new_count)
  73. reward += bonus
  74. return obs, reward, done, info
  75. def reset(self, **kwargs):
  76. return self.env.reset(**kwargs)
  77. class ImgObsWrapper(ObservationWrapper):
  78. """
  79. Use the image as the only observation output, no language/mission.
  80. """
  81. def __init__(self, env):
  82. super().__init__(env)
  83. self.observation_space = env.observation_space.spaces["image"]
  84. def observation(self, obs):
  85. return obs["image"]
  86. class OneHotPartialObsWrapper(ObservationWrapper):
  87. """
  88. Wrapper to get a one-hot encoding of a partially observable
  89. agent view as observation.
  90. """
  91. def __init__(self, env, tile_size=8):
  92. super().__init__(env)
  93. self.tile_size = tile_size
  94. obs_shape = env.observation_space["image"].shape
  95. # Number of bits per cell
  96. num_bits = len(OBJECT_TO_IDX) + len(COLOR_TO_IDX) + len(STATE_TO_IDX)
  97. new_image_space = spaces.Box(
  98. low=0, high=255, shape=(obs_shape[0], obs_shape[1], num_bits), dtype="uint8"
  99. )
  100. self.observation_space = spaces.Dict(
  101. {**self.observation_space.spaces, "image": new_image_space}
  102. )
  103. def observation(self, obs):
  104. img = obs["image"]
  105. out = np.zeros(self.observation_space.spaces["image"].shape, dtype="uint8")
  106. for i in range(img.shape[0]):
  107. for j in range(img.shape[1]):
  108. type = img[i, j, 0]
  109. color = img[i, j, 1]
  110. state = img[i, j, 2]
  111. out[i, j, type] = 1
  112. out[i, j, len(OBJECT_TO_IDX) + color] = 1
  113. out[i, j, len(OBJECT_TO_IDX) + len(COLOR_TO_IDX) + state] = 1
  114. return {**obs, "image": out}
  115. class RGBImgObsWrapper(ObservationWrapper):
  116. """
  117. Wrapper to use fully observable RGB image as observation,
  118. This can be used to have the agent to solve the gridworld in pixel space.
  119. """
  120. def __init__(self, env, tile_size=8):
  121. super().__init__(env)
  122. self.tile_size = tile_size
  123. new_image_space = spaces.Box(
  124. low=0,
  125. high=255,
  126. shape=(self.env.width * tile_size, self.env.height * tile_size, 3),
  127. dtype="uint8",
  128. )
  129. self.observation_space = spaces.Dict(
  130. {**self.observation_space.spaces, "image": new_image_space}
  131. )
  132. def observation(self, obs):
  133. env = self.unwrapped
  134. rgb_img = env._render(
  135. mode="rgb_array", highlight=True, tile_size=self.tile_size
  136. )
  137. return {**obs, "image": rgb_img}
  138. class RGBImgPartialObsWrapper(ObservationWrapper):
  139. """
  140. Wrapper to use partially observable RGB image as observation.
  141. This can be used to have the agent to solve the gridworld in pixel space.
  142. """
  143. def __init__(self, env, tile_size=8):
  144. super().__init__(env)
  145. self.tile_size = tile_size
  146. obs_shape = env.observation_space.spaces["image"].shape
  147. new_image_space = spaces.Box(
  148. low=0,
  149. high=255,
  150. shape=(obs_shape[0] * tile_size, obs_shape[1] * tile_size, 3),
  151. dtype="uint8",
  152. )
  153. self.observation_space = spaces.Dict(
  154. {**self.observation_space.spaces, "image": new_image_space}
  155. )
  156. def observation(self, obs):
  157. env = self.unwrapped
  158. rgb_img_partial = env.get_obs_render(obs["image"], tile_size=self.tile_size)
  159. return {**obs, "image": rgb_img_partial}
  160. class FullyObsWrapper(ObservationWrapper):
  161. """
  162. Fully observable gridworld using a compact grid encoding
  163. """
  164. def __init__(self, env):
  165. super().__init__(env)
  166. new_image_space = spaces.Box(
  167. low=0,
  168. high=255,
  169. shape=(self.env.width, self.env.height, 3), # number of cells
  170. dtype="uint8",
  171. )
  172. self.observation_space = spaces.Dict(
  173. {**self.observation_space.spaces, "image": new_image_space}
  174. )
  175. def observation(self, obs):
  176. env = self.unwrapped
  177. full_grid = env.grid.encode()
  178. full_grid[env.agent_pos[0]][env.agent_pos[1]] = np.array(
  179. [OBJECT_TO_IDX["agent"], COLOR_TO_IDX["red"], env.agent_dir]
  180. )
  181. return {**obs, "image": full_grid}
  182. class DictObservationSpaceWrapper(ObservationWrapper):
  183. """
  184. Transforms the observation space (that has a textual component) to a fully numerical observation space,
  185. where the textual instructions are replaced by arrays representing the indices of each word in a fixed vocabulary.
  186. """
  187. def __init__(self, env, max_words_in_mission=50, word_dict=None):
  188. """
  189. max_words_in_mission is the length of the array to represent a mission, value 0 for missing words
  190. word_dict is a dictionary of words to use (keys=words, values=indices from 1 to < max_words_in_mission),
  191. if None, use the Minigrid language
  192. """
  193. super().__init__(env)
  194. if word_dict is None:
  195. word_dict = self.get_minigrid_words()
  196. self.max_words_in_mission = max_words_in_mission
  197. self.word_dict = word_dict
  198. image_observation_space = spaces.Box(
  199. low=0,
  200. high=255,
  201. shape=(self.agent_view_size, self.agent_view_size, 3),
  202. dtype="uint8",
  203. )
  204. self.observation_space = spaces.Dict(
  205. {
  206. "image": image_observation_space,
  207. "direction": spaces.Discrete(4),
  208. "mission": spaces.MultiDiscrete(
  209. [len(self.word_dict.keys())] * max_words_in_mission
  210. ),
  211. }
  212. )
  213. @staticmethod
  214. def get_minigrid_words():
  215. colors = ["red", "green", "blue", "yellow", "purple", "grey"]
  216. objects = [
  217. "unseen",
  218. "empty",
  219. "wall",
  220. "floor",
  221. "box",
  222. "key",
  223. "ball",
  224. "door",
  225. "goal",
  226. "agent",
  227. "lava",
  228. ]
  229. verbs = [
  230. "pick",
  231. "avoid",
  232. "get",
  233. "find",
  234. "put",
  235. "use",
  236. "open",
  237. "go",
  238. "fetch",
  239. "reach",
  240. "unlock",
  241. "traverse",
  242. ]
  243. extra_words = [
  244. "up",
  245. "the",
  246. "a",
  247. "at",
  248. ",",
  249. "square",
  250. "and",
  251. "then",
  252. "to",
  253. "of",
  254. "rooms",
  255. "near",
  256. "opening",
  257. "must",
  258. "you",
  259. "matching",
  260. "end",
  261. "hallway",
  262. "object",
  263. "from",
  264. "room",
  265. ]
  266. all_words = colors + objects + verbs + extra_words
  267. assert len(all_words) == len(set(all_words))
  268. return {word: i for i, word in enumerate(all_words)}
  269. def string_to_indices(self, string, offset=1):
  270. """
  271. Convert a string to a list of indices.
  272. """
  273. indices = []
  274. # adding space before and after commas
  275. string = string.replace(",", " , ")
  276. for word in string.split():
  277. if word in self.word_dict.keys():
  278. indices.append(self.word_dict[word] + offset)
  279. else:
  280. raise ValueError(f"Unknown word: {word}")
  281. return indices
  282. def observation(self, obs):
  283. obs["mission"] = self.string_to_indices(obs["mission"])
  284. assert len(obs["mission"]) < self.max_words_in_mission
  285. obs["mission"] += [0] * (self.max_words_in_mission - len(obs["mission"]))
  286. return obs
  287. class FlatObsWrapper(ObservationWrapper):
  288. """
  289. Encode mission strings using a one-hot scheme,
  290. and combine these with observed images into one flat array
  291. """
  292. def __init__(self, env, maxStrLen=96):
  293. super().__init__(env)
  294. self.maxStrLen = maxStrLen
  295. self.numCharCodes = 28
  296. imgSpace = env.observation_space.spaces["image"]
  297. imgSize = reduce(operator.mul, imgSpace.shape, 1)
  298. self.observation_space = spaces.Box(
  299. low=0,
  300. high=255,
  301. shape=(imgSize + self.numCharCodes * self.maxStrLen,),
  302. dtype="uint8",
  303. )
  304. self.cachedStr: str = None
  305. def observation(self, obs):
  306. image = obs["image"]
  307. mission = obs["mission"]
  308. # Cache the last-encoded mission string
  309. if mission != self.cachedStr:
  310. assert (
  311. len(mission) <= self.maxStrLen
  312. ), f"mission string too long ({len(mission)} chars)"
  313. mission = mission.lower()
  314. strArray = np.zeros(
  315. shape=(self.maxStrLen, self.numCharCodes), dtype="float32"
  316. )
  317. for idx, ch in enumerate(mission):
  318. if ch >= "a" and ch <= "z":
  319. chNo = ord(ch) - ord("a")
  320. elif ch == " ":
  321. chNo = ord("z") - ord("a") + 1
  322. elif ch == ",":
  323. chNo = ord("z") - ord("a") + 2
  324. else:
  325. raise ValueError(
  326. f"Character {ch} is not available in mission string."
  327. )
  328. assert chNo < self.numCharCodes, "%s : %d" % (ch, chNo)
  329. strArray[idx, chNo] = 1
  330. self.cachedStr = mission
  331. self.cachedArray = strArray
  332. obs = np.concatenate((image.flatten(), self.cachedArray.flatten()))
  333. return obs
  334. class ViewSizeWrapper(Wrapper):
  335. """
  336. Wrapper to customize the agent field of view size.
  337. This cannot be used with fully observable wrappers.
  338. """
  339. def __init__(self, env, agent_view_size=7):
  340. super().__init__(env)
  341. assert agent_view_size % 2 == 1
  342. assert agent_view_size >= 3
  343. self.agent_view_size = agent_view_size
  344. # Compute observation space with specified view size
  345. new_image_space = gym.spaces.Box(
  346. low=0, high=255, shape=(agent_view_size, agent_view_size, 3), dtype="uint8"
  347. )
  348. # Override the environment's observation spaceexit
  349. self.observation_space = spaces.Dict(
  350. {**self.observation_space.spaces, "image": new_image_space}
  351. )
  352. def observation(self, obs):
  353. env = self.unwrapped
  354. grid, vis_mask = env.gen_obs_grid(self.agent_view_size)
  355. # Encode the partially observable view into a numpy array
  356. image = grid.encode(vis_mask)
  357. return {**obs, "image": image}
  358. class DirectionObsWrapper(ObservationWrapper):
  359. """
  360. Provides the slope/angular direction to the goal with the observations as modeled by (y2 - y2 )/( x2 - x1)
  361. type = {slope , angle}
  362. """
  363. def __init__(self, env, type="slope"):
  364. super().__init__(env)
  365. self.goal_position: tuple = None
  366. self.type = type
  367. def reset(self):
  368. obs = self.env.reset()
  369. if not self.goal_position:
  370. self.goal_position = [
  371. x for x, y in enumerate(self.grid.grid) if isinstance(y, Goal)
  372. ]
  373. # in case there are multiple goals , needs to be handled for other env types
  374. if len(self.goal_position) >= 1:
  375. self.goal_position = (
  376. int(self.goal_position[0] / self.height),
  377. self.goal_position[0] % self.width,
  378. )
  379. return obs
  380. def observation(self, obs):
  381. slope = np.divide(
  382. self.goal_position[1] - self.agent_pos[1],
  383. self.goal_position[0] - self.agent_pos[0],
  384. )
  385. obs["goal_direction"] = np.arctan(slope) if self.type == "angle" else slope
  386. return obs
  387. class SymbolicObsWrapper(ObservationWrapper):
  388. """
  389. Fully observable grid with a symbolic state representation.
  390. The symbol is a triple of (X, Y, IDX), where X and Y are
  391. the coordinates on the grid, and IDX is the id of the object.
  392. """
  393. def __init__(self, env):
  394. super().__init__(env)
  395. new_image_space = spaces.Box(
  396. low=0,
  397. high=max(OBJECT_TO_IDX.values()),
  398. shape=(self.env.width, self.env.height, 3), # number of cells
  399. dtype="uint8",
  400. )
  401. self.observation_space = spaces.Dict(
  402. {**self.observation_space.spaces, "image": new_image_space}
  403. )
  404. def observation(self, obs):
  405. objects = np.array(
  406. [OBJECT_TO_IDX[o.type] if o is not None else -1 for o in self.grid.grid]
  407. )
  408. w, h = self.width, self.height
  409. grid = np.mgrid[:w, :h]
  410. grid = np.concatenate([grid, objects.reshape(1, w, h)])
  411. grid = np.transpose(grid, (1, 2, 0))
  412. obs["image"] = grid
  413. return obs