123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- from __future__ import annotations
- from minigrid.core.grid import Grid
- from minigrid.core.mission import MissionSpace
- from minigrid.core.world_object import Door, Goal, Key
- from minigrid.minigrid_env import MiniGridEnv
- class DoorKeyEnv(MiniGridEnv):
- """
- ## Description
- This environment has a key that the agent must pick up in order to unlock a
- door and then get to the green goal square. This environment is difficult,
- because of the sparse reward, to solve using classical RL algorithms. It is
- useful to experiment with curiosity or curriculum learning.
- ## Mission Space
- "use the key to open the door and then get to the goal"
- ## Action Space
- | Num | Name | Action |
- |-----|--------------|---------------------------|
- | 0 | left | Turn left |
- | 1 | right | Turn right |
- | 2 | forward | Move forward |
- | 3 | pickup | Pick up an object |
- | 4 | drop | Unused |
- | 5 | toggle | Toggle/activate an object |
- | 6 | done | Unused |
- ## Observation Encoding
- - Each tile is encoded as a 3 dimensional tuple:
- `(OBJECT_IDX, COLOR_IDX, STATE)`
- - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
- [minigrid/core/constants.py](minigrid/core/constants.py)
- - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
- ## Rewards
- A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
- ## Termination
- The episode ends if any one of the following conditions is met:
- 1. The agent reaches the goal.
- 2. Timeout (see `max_steps`).
- ## Registered Configurations
- - `MiniGrid-DoorKey-5x5-v0`
- - `MiniGrid-DoorKey-6x6-v0`
- - `MiniGrid-DoorKey-8x8-v0`
- - `MiniGrid-DoorKey-16x16-v0`
- """
- def __init__(self, size=8, max_steps: int | None = None, **kwargs):
- if max_steps is None:
- max_steps = 10 * size**2
- mission_space = MissionSpace(mission_func=self._gen_mission)
- super().__init__(
- mission_space=mission_space, grid_size=size, max_steps=max_steps, **kwargs
- )
- @staticmethod
- def _gen_mission():
- return "use the key to open the door and then get to the goal"
- def _gen_grid(self, width, height):
- # Create an empty grid
- self.grid = Grid(width, height)
- # Generate the surrounding walls
- self.grid.wall_rect(0, 0, width, height)
- # Place a goal in the bottom-right corner
- self.put_obj(Goal(), width - 2, height - 2)
- # Create a vertical splitting wall
- splitIdx = self._rand_int(2, width - 2)
- self.grid.vert_wall(splitIdx, 0)
- # Place the agent at a random position and orientation
- # on the left side of the splitting wall
- self.place_agent(size=(splitIdx, height))
- # Place a door in the wall
- doorIdx = self._rand_int(1, height - 2)
- self.put_obj(Door("yellow", is_locked=True), splitIdx, doorIdx)
- # Place a yellow key on the left side
- self.place_obj(obj=Key("yellow"), top=(0, 0), size=(splitIdx, height))
- self.mission = "use the key to open the door and then get to the goal"
|